Lets-Verify-Step-by-Step
Lets-Verify-Step-by-Step copied to clipboard
"Improving Mathematical Reasoning with Process Supervision" by OPENAI
trafficstars
"Let’s Verify Step by Step"
Implementation of "Improving Mathematical Reasoning with Process Supervision" by OPENAI
Install
pip3 install --upgrade process-supervision-torch
Usage:
GPT4 without tokenizer
import torch
from process_supervision.main import GPT4
# Usage with random inputs
text = torch.randint(0, 20000, (1, 1024))
# Initiliaze the model
model = GPT4()
output = model(text)
print(output)
PRM
import torch
from process_supervision.prm import PRM
from swarms.models import OpenAIChat
from process_supervision.generator import MathDataGenerator
import os
from dotenv import load_dotenv
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
# LLM initialization
llm = OpenAIChat(openai_api_key=api_key)
# Math data generator initialization
math_datagenerator = MathDataGenerator(llm, num_iters=10)
# Device initialization
device = 0 if torch.cuda.is_available() else "cpu"
# Model initialization
prm_model = PRM(
model_name="lvwerra/gpt2-imdb-pos-v2",
ref_model_name="lvwerra/gpt2-imdb",
reward_model_name="lvwerra/distilbert-imdb",
device=device,
)
# Generation arguments
gen_kwargs = {
"min_length": -1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": prm_model.tokenizer.eos_token_id,
}
sent_kwargs = {"top_k": None, "function_to_apply": "none", "batch_size": 16}
# Sample queries
queries = ["Sample query 1", "Sample query 2"]
queries = [math_datagenerator.generate_samples(query) for query in queries]
# Generate responses
responses = prm_model.generate_responses(
queries, gen_len=10, gen_kwargs=gen_kwargs
)
# Score responses
scores = prm_model.score_responses(responses, sent_kwargs)
# Display results
for query, response, score in zip(queries, responses, scores):
print(f"Query: {query}\nResponse: {response}\nScore: {score}\n")
GPT4 + PRM
Method
Citation
@misc{lightman2023lets,
title={Let's Verify Step by Step},
author={Hunter Lightman and Vineet Kosaraju and Yura Burda and Harri Edwards and Bowen Baker and Teddy Lee and Jan Leike and John Schulman and Ilya Sutskever and Karl Cobbe},
year={2023},
eprint={2305.20050},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Todo
- [ ] We need help integrating the math sample generator, first create the class and prompts and pass them into gpt4
- [ ] Then conduct best of N sampling with the reward model and reward each step
- [ ] Train or finetune now model with dataset
- [ ] Have a better idea? LMK
License
MIT