pytorch-retinanet
pytorch-retinanet copied to clipboard
loss is nan
loc_loss: -9223372036854775808.000 | cls_loss: 9223372036854775808.000 | train_loss: inf | avg_loss: inf loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan loc_loss: -9223372036854775808.000 | cls_loss: -9223372036854775808.000 | train_loss: nan | avg_loss: nan
I have the same problem