gb
gb copied to clipboard
A minimal C implementation of Nintendo Gameboy - An fast research environment for Reinforcement Learning
Quick start
- Build C lib
make gameboy.so
- Run the front end from python:
python gameboy.py --rom {PATH_TO_ROM}
C dependencies
None
Python dependencies
Numpy, CFFI
Fix for 'gameboy.so' not found:
export LD_LIBRARY_PATH=.
Usage
Use the provided python wrapper. Example:
- Run the environment for 0.5M steps
- Produce a 50 frame-long gif every 30s
python gameboy.py --rom ./gb_roms/Micro_Machines_\(USA\,_Europe\).gb --framelimit=500000 --write_gif_every 30 --write_gif_duration 50
Output:
time: 00h 00m 30s, frames 0.06M
time: 00h 01m 00s, frames 0.12M
time: 00h 01m 30s, frames 0.18M
time: 00h 02m 00s, frames 0.24M
time: 00h 02m 30s, frames 0.30M
time: 00h 03m 00s, frames 0.36M
time: 00h 03m 30s, frames 0.42M
time: 00h 04m 00s, frames 0.48M
GIFS generated every 30s:
Generate lots of frames and save them to gif and npy files:
python make_gifs.py --rom {PATH_TO_ROM}
For example, running the command python make_gifs.py --rom ./wario_walking.gb
will result in a file like this:
Alternatively, build a standalone gameboy with GLFW support and play games manually
To build:
make
To play:
./gameboy {PATH_TO_ROM}
enter - START
space - SELECT
Z - A
X - B
+ arrows (left, right, down, up)
SHIFT - turbo mode