super-resolution
super-resolution copied to clipboard
ValueError: The channel dimension of the inputs should be defined. Found `None`.
I am getting this error. Is this a keras version error?
ValueError Traceback (most recent call last)
~/Rohit/hackathon/2023/super-resolution/model/edsr.py in edsr(scale, num_filters, num_res_blocks, res_block_scaling) 9 x = Lambda(normalize)(x_in) 10 ---> 11 x = b = Conv2D(num_filters, 3, padding='same')(x) 12 for i in range(num_res_blocks): 13 b = res_block(b, num_filters, res_block_scaling)
~/anaconda3/envs/sisr/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in call(self, *args, **kwargs)
924 if _in_functional_construction_mode(self, inputs, args, kwargs, input_list):
925 return self._functional_construction_call(inputs, args, kwargs,
--> 926 input_list)
927
928 # Maintains info about the Layer.call
stack.
~/anaconda3/envs/sisr/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in _functional_construction_call(self, inputs, args, kwargs, input_list)
1096 # Build layer if applicable (if the build
method has been
1097 # overridden).
-> 1098 self._maybe_build(inputs)
1099 cast_inputs = self._maybe_cast_inputs(inputs, input_list)
1100
~/anaconda3/envs/sisr/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in _maybe_build(self, inputs) 2641 # operations. 2642 with tf_utils.maybe_init_scope(self): -> 2643 self.build(input_shapes) # pylint:disable=not-callable 2644 # We must set also ensure that the layer is marked as built, and the build 2645 # shape is stored since user defined build functions may not be calling
~/anaconda3/envs/sisr/lib/python3.6/site-packages/tensorflow/python/keras/layers/convolutional.py in build(self, input_shape) 185 def build(self, input_shape): 186 input_shape = tensor_shape.TensorShape(input_shape) --> 187 input_channel = self._get_input_channel(input_shape) 188 if input_channel % self.groups != 0: 189 raise ValueError(
~/anaconda3/envs/sisr/lib/python3.6/site-packages/tensorflow/python/keras/layers/convolutional.py in _get_input_channel(self, input_shape)
357 channel_axis = self._get_channel_axis()
358 if input_shape.dims[channel_axis].value is None:
--> 359 raise ValueError('The channel dimension of the inputs '
360 'should be defined. Found None
.')
361 return int(input_shape[channel_axis])
ValueError: The channel dimension of the inputs should be defined. Found None
.