bert-for-tf2
bert-for-tf2 copied to clipboard
A Keras TensorFlow 2.0 implementation of BERT, ALBERT and adapter-BERT.
BERT for TensorFlow v2
|Build Status| |Coverage Status| |Version Status| |Python Versions| |Downloads|
This repo contains a TensorFlow 2.0_ Keras_ implementation of google-research/bert_
with support for loading of the original pre-trained weights_,
and producing activations numerically identical to the one calculated by the original model.
ALBERT_ and adapter-BERT_ are also supported by setting the corresponding
configuration parameters (shared_layer=True, embedding_size for ALBERT_
and adapter_size for adapter-BERT_). Setting both will result in an adapter-ALBERT
by sharing the BERT parameters across all layers while adapting every layer with layer specific adapter.
The implementation is build from scratch using only basic tensorflow operations,
following the code in google-research/bert/modeling.py_
(but skipping dead code and applying some simplifications). It also utilizes kpe/params-flow_ to reduce
common Keras boilerplate code (related to passing model and layer configuration arguments).
bert-for-tf2_ should work with both TensorFlow 2.0_ and TensorFlow 1.14_ or newer.
NEWS
-
30.Jul.2020 -
VERBOSE=0env variable for suppressing stdout output. -
06.Apr.2020 - using latest
py-paramsintroducingWithParamsbase forLayerandModel. See news inkpe/py-params_ for how to update (_construct()signature has change and requires callingsuper().__construct()). -
06.Jan.2020 - support for loading the tar format weights from
google-research/ALBERT. -
18.Nov.2019 - ALBERT tokenization added (make sure to import as
from bert import albert_tokenizationorfrom bert import bert_tokenization). -
08.Nov.2019 - using v2 per default when loading the
TFHub/albert_ weights ofgoogle-research/ALBERT_. -
05.Nov.2019 - minor ALBERT word embeddings refactoring (
word_embeddings_2->word_embeddings_projector) and related parameter freezing fixes. -
04.Nov.2019 - support for extra (task specific) token embeddings using negative token ids.
-
29.Oct.2019 - support for loading of the pre-trained ALBERT weights released by
google-research/ALBERT_ atTFHub/albert_. -
11.Oct.2019 - support for loading of the pre-trained ALBERT weights released by
brightmart/albert_zh ALBERT for Chinese_. -
10.Oct.2019 - support for
ALBERT_ through theshared_layer=Trueandembedding_size=128params. -
03.Sep.2019 - walkthrough on fine tuning with adapter-BERT and storing the fine tuned fraction of the weights in a separate checkpoint (see
tests/test_adapter_finetune.py). -
02.Sep.2019 - support for extending the token type embeddings of a pre-trained model by returning the mismatched weights in
load_stock_weights()(seetests/test_extend_segments.py). -
25.Jul.2019 - there are now two colab notebooks under
examples/showing how to fine-tune an IMDB Movie Reviews sentiment classifier from pre-trained BERT weights using anadapter-BERT_ model architecture on a GPU or TPU in Google Colab. -
28.Jun.2019 - v.0.3.0 supports
adapter-BERT_ (google-research/adapter-bert_) for "Parameter-Efficient Transfer Learning for NLP", i.e. fine-tuning small overlay adapter layers over BERT's transformer encoders without changing the frozen BERT weights.
LICENSE
MIT. See License File <https://github.com/kpe/bert-for-tf2/blob/master/LICENSE.txt>_.
Install
bert-for-tf2 is on the Python Package Index (PyPI):
::
pip install bert-for-tf2
Usage
BERT in bert-for-tf2 is implemented as a Keras layer. You could instantiate it like this:
.. code:: python
from bert import BertModelLayer
l_bert = BertModelLayer(**BertModelLayer.Params( vocab_size = 16000, # embedding params use_token_type = True, use_position_embeddings = True, token_type_vocab_size = 2,
num_layers = 12, # transformer encoder params
hidden_size = 768,
hidden_dropout = 0.1,
intermediate_size = 4*768,
intermediate_activation = "gelu",
adapter_size = None, # see arXiv:1902.00751 (adapter-BERT)
shared_layer = False, # True for ALBERT (arXiv:1909.11942)
embedding_size = None, # None for BERT, wordpiece embedding size for ALBERT
name = "bert" # any other Keras layer params
))
or by using the bert_config.json from a pre-trained google model_:
.. code:: python
import bert
model_dir = ".models/uncased_L-12_H-768_A-12"
bert_params = bert.params_from_pretrained_ckpt(model_dir) l_bert = bert.BertModelLayer.from_params(bert_params, name="bert")
now you can use the BERT layer in your Keras model like this:
.. code:: python
from tensorflow import keras
max_seq_len = 128 l_input_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32') l_token_type_ids = keras.layers.Input(shape=(max_seq_len,), dtype='int32')
using the default token_type/segment id 0
output = l_bert(l_input_ids) # output: [batch_size, max_seq_len, hidden_size] model = keras.Model(inputs=l_input_ids, outputs=output) model.build(input_shape=(None, max_seq_len))
provide a custom token_type/segment id as a layer input
output = l_bert([l_input_ids, l_token_type_ids]) # [batch_size, max_seq_len, hidden_size] model = keras.Model(inputs=[l_input_ids, l_token_type_ids], outputs=output) model.build(input_shape=[(None, max_seq_len), (None, max_seq_len)])
if you choose to use adapter-BERT_ by setting the adapter_size parameter,
you would also like to freeze all the original BERT layers by calling:
.. code:: python
l_bert.apply_adapter_freeze()
and once the model has been build or compiled, the original pre-trained weights can be loaded in the BERT layer:
.. code:: python
import bert
bert_ckpt_file = os.path.join(model_dir, "bert_model.ckpt") bert.load_stock_weights(l_bert, bert_ckpt_file)
N.B. see tests/test_bert_activations.py_ for a complete example.
FAQ
- In all the examlpes bellow, please note the line:
.. code:: python
use in a Keras Model here, and call model.build()
for a quick test, you can replace it with something like:
.. code:: python
model = keras.models.Sequential([ keras.layers.InputLayer(input_shape=(128,)), l_bert, keras.layers.Lambda(lambda x: x[:, 0, :]), keras.layers.Dense(2) ]) model.build(input_shape=(None, 128))
- How to use BERT with the
google-research/bert_ pre-trained weights?
.. code:: python
model_name = "uncased_L-12_H-768_A-12" model_dir = bert.fetch_google_bert_model(model_name, ".models") model_ckpt = os.path.join(model_dir, "bert_model.ckpt")
bert_params = bert.params_from_pretrained_ckpt(model_dir) l_bert = bert.BertModelLayer.from_params(bert_params, name="bert")
use in a Keras Model here, and call model.build()
bert.load_bert_weights(l_bert, model_ckpt) # should be called after model.build()
- How to use ALBERT with the
google-research/ALBERT_ pre-trained weights (fetching from TFHub)?
see tests/nonci/test_load_pretrained_weights.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_load_pretrained_weights.py>_:
.. code:: python
model_name = "albert_base" model_dir = bert.fetch_tfhub_albert_model(model_name, ".models") model_params = bert.albert_params(model_name) l_bert = bert.BertModelLayer.from_params(model_params, name="albert")
use in a Keras Model here, and call model.build()
bert.load_albert_weights(l_bert, albert_dir) # should be called after model.build()
- How to use ALBERT with the
google-research/ALBERT_ pre-trained weights (non TFHub)?
see tests/nonci/test_load_pretrained_weights.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_load_pretrained_weights.py>_:
.. code:: python
model_name = "albert_base_v2" model_dir = bert.fetch_google_albert_model(model_name, ".models") model_ckpt = os.path.join(albert_dir, "model.ckpt-best")
model_params = bert.albert_params(model_dir) l_bert = bert.BertModelLayer.from_params(model_params, name="albert")
use in a Keras Model here, and call model.build()
bert.load_albert_weights(l_bert, model_ckpt) # should be called after model.build()
- How to use ALBERT with the
brightmart/albert_zh_ pre-trained weights?
see tests/nonci/test_albert.py <https://github.com/kpe/bert-for-tf2/blob/master/tests/nonci/test_albert.py>_:
.. code:: python
model_name = "albert_base" model_dir = bert.fetch_brightmart_albert_model(model_name, ".models") model_ckpt = os.path.join(model_dir, "albert_model.ckpt")
bert_params = bert.params_from_pretrained_ckpt(model_dir) l_bert = bert.BertModelLayer.from_params(bert_params, name="bert")
use in a Keras Model here, and call model.build()
bert.load_albert_weights(l_bert, model_ckpt) # should be called after model.build()
- How to tokenize the input for the
google-research/bert_ models?
.. code:: python
do_lower_case = not (model_name.find("cased") == 0 or model_name.find("multi_cased") == 0) bert.bert_tokenization.validate_case_matches_checkpoint(do_lower_case, model_ckpt) vocab_file = os.path.join(model_dir, "vocab.txt") tokenizer = bert.bert_tokenization.FullTokenizer(vocab_file, do_lower_case) tokens = tokenizer.tokenize("Hello, BERT-World!") token_ids = tokenizer.convert_tokens_to_ids(tokens)
- How to tokenize the input for
brightmart/albert_zh?
.. code:: python
import params_flow pf
fetch the vocab file
albert_zh_vocab_url = "https://raw.githubusercontent.com/brightmart/albert_zh/master/albert_config/vocab.txt" vocab_file = pf.utils.fetch_url(albert_zh_vocab_url, model_dir)
tokenizer = bert.albert_tokenization.FullTokenizer(vocab_file) tokens = tokenizer.tokenize("你好世界") token_ids = tokenizer.convert_tokens_to_ids(tokens)
- How to tokenize the input for the
google-research/ALBERT_ models?
.. code:: python
import sentencepiece as spm
spm_model = os.path.join(model_dir, "assets", "30k-clean.model") sp = spm.SentencePieceProcessor() sp.load(spm_model) do_lower_case = True
processed_text = bert.albert_tokenization.preprocess_text("Hello, World!", lower=do_lower_case) token_ids = bert.albert_tokenization.encode_ids(sp, processed_text)
- How to tokenize the input for the Chinese
google-research/ALBERT_ models?
.. code:: python
import bert
vocab_file = os.path.join(model_dir, "vocab.txt") tokenizer = bert.albert_tokenization.FullTokenizer(vocab_file=vocab_file) tokens = tokenizer.tokenize(u"你好世界") token_ids = tokenizer.convert_tokens_to_ids(tokens)
Resources
BERT_ - BERT: Pre-training of Deep Bidirectional Transformers for Language Understandingadapter-BERT_ - adapter-BERT: Parameter-Efficient Transfer Learning for NLPALBERT_ - ALBERT: A Lite BERT for Self-Supervised Learning of Language Representationsgoogle-research/bert_ - the originalBERT_ implementationgoogle-research/ALBERT_ - the originalALBERT_ implementation by Googlegoogle-research/albert(old)_ - the old location of the originalALBERT_ implementation by Googlebrightmart/albert_zh_ - pre-trainedALBERT_ weights for Chinesekpe/params-flow_ - A Keras coding style for reducingKeras_ boilerplate code in custom layers by utilizingkpe/py-params_
.. _kpe/params-flow: https://github.com/kpe/params-flow
.. _kpe/py-params: https://github.com/kpe/py-params
.. _bert-for-tf2: https://github.com/kpe/bert-for-tf2
.. _Keras: https://keras.io
.. _pre-trained weights: https://github.com/google-research/bert#pre-trained-models
.. _google-research/bert: https://github.com/google-research/bert
.. _google-research/bert/modeling.py: https://github.com/google-research/bert/blob/master/modeling.py
.. _BERT: https://arxiv.org/abs/1810.04805
.. _pre-trained google model: https://github.com/google-research/bert
.. _tests/test_bert_activations.py: https://github.com/kpe/bert-for-tf2/blob/master/tests/test_compare_activations.py
.. _TensorFlow 2.0: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf
.. _TensorFlow 1.14: https://www.tensorflow.org/versions/r1.14/api_docs/python/tf
.. _google-research/adapter-bert: https://github.com/google-research/adapter-bert/
.. _adapter-BERT: https://arxiv.org/abs/1902.00751
.. _ALBERT: https://arxiv.org/abs/1909.11942
.. _brightmart/albert_zh ALBERT for Chinese: https://github.com/brightmart/albert_zh
.. _brightmart/albert_zh: https://github.com/brightmart/albert_zh
.. _google ALBERT weights: https://github.com/google-research/google-research/tree/master/albert
.. _google-research/albert(old): https://github.com/google-research/google-research/tree/master/albert
.. _google-research/ALBERT: https://github.com/google-research/ALBERT
.. _TFHub/albert: https://tfhub.dev/google/albert_base/2
.. |Build Status| image:: https://travis-ci.com/kpe/bert-for-tf2.svg?branch=master :target: https://travis-ci.com/kpe/bert-for-tf2 .. |Coverage Status| image:: https://coveralls.io/repos/kpe/bert-for-tf2/badge.svg?branch=master :target: https://coveralls.io/r/kpe/bert-for-tf2?branch=master .. |Version Status| image:: https://badge.fury.io/py/bert-for-tf2.svg :target: https://badge.fury.io/py/bert-for-tf2 .. |Python Versions| image:: https://img.shields.io/pypi/pyversions/bert-for-tf2.svg .. |Downloads| image:: https://img.shields.io/pypi/dm/bert-for-tf2.svg .. |Twitter| image:: https://img.shields.io/twitter/follow/siddhadev?logo=twitter&label=&style= :target: https://twitter.com/intent/user?screen_name=siddhadev