DATA SCIENCE
''' IRIS DATASET '''
required libraries
import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.metrics import accuracy_score
read the dataset
data = pd.read_csv('Iris.csv') print(data.head())
print('\n\nColumn Names\n\n') print(data.columns)
#label encode the target variable encode = LabelEncoder() data.Species = encode.fit_transform(data.Species)
print(data.head())
train-test-split
train , test = train_test_split(data,test_size=0.2,random_state=0)
print('shape of training data : ',train.shape) print('shape of testing data',test.shape)
seperate the target and independent variable
train_x = train.drop(columns=['Species'],axis=1) train_y = train['Species']
test_x = test.drop(columns=['Species'],axis=1) test_y = test['Species']
create the object of the model
model = LogisticRegression()
model.fit(train_x,train_y)
predict = model.predict(test_x)
print('Predicted Values on Test Data',encode.inverse_transform(predict))
print('\n\nAccuracy Score on test data : \n\n') print(accuracy_score(test_y,predict))