ESPF
ESPF copied to clipboard
Explainable Substructure Partition Fingerprint for Protein, Drug, and More (NeurIPS 19 LMRL Workshop)
trafficstars
Explainable Substructure Partition Fingerprint (ESPF)
Repository for "Explainable Substructure Partition Fingerprint for Protein, Drug, and More" (NeurIPS Learning Meaningful Representation of Life Workshop)
Installation
pip install subword-nmt
git clone this repo
Requirements
pandas
codecs
Usage
from subword_nmt.apply_bpe import BPE
import codecs
dataFolder = path to this repo +'/info'
# For Proteins
vocab_path = dataFolder + '/codes_protein.txt'
bpe_codes_protein = codecs.open(vocab_path)
pbpe = BPE(bpe_codes_protein, merges=-1, separator='')
sub_csv = pd.read_csv(dataFolder + '/subword_units_map_protein.csv')
idx2word_p = sub_csv['index'].values
words2idx_p = dict(zip(idx2word_p, range(0, len(idx2word_p))))
# For Drugs
vocab_path = dataFolder + '/codes_drug.txt'
bpe_codes_drug = codecs.open(vocab_path)
dbpe = BPE(bpe_codes_drug, merges=-1, separator='')
sub_csv = pd.read_csv(dataFolder + '/subword_units_map_drug.csv')
idx2word_d = sub_csv['index'].values
words2idx_d = dict(zip(idx2word_d, range(0, len(idx2word_d))))
# Example: Given Drug SMILES String s, output a bit vector v
s = 'CC(C)C(=C)CC(O)C(C)(O)[C@H]1CC[C@H]2C3=C[C@H](OC(=O)C)[C@H]4[C@@H](OC(=O)C)[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C'
t = dbpe.process_line(s).split()
# t: 'CC(C)C (=C )CC (O)C (C) (O) [C@H]1CC [C@H]2C 3=C [C@H](OC(=O)C) [C@H]4 [C@@H](OC(=O)C) [C@@H](O)CC [C@]4(C)[C@H]3CC [C@]12C'
i = [words2idx_d[i] for i in t]
v = np.zeros(len(idx2word_d), )
v[i] = 1
Repo Files Pointer
Proteins
- 'codes_protein.txt' & '/subword_units_map_protein.csv': Using BindingDB target sequences
- 'codes_protein_uniprot.txt' & '/subword_units_map_protein_uniprot.csv': Using Uniprot target sequences (~500K) with minimum frequency 500. This generates ~20,000 substructures.
- 'codes_protein_uniprot_2000.txt' & '/subword_units_map_protein_uniprot_2000.csv': Using Uniprot target sequences (~500K) with minimum frequency 2000. This generates ~4,000 substructures. We find this already has good predictive performance.
Drugs
- 'codes_drug.txt' & '/subword_units_map_drug.csv': Using FooDB & DrugBank SMILES strings
- 'codes_drug_chembl.txt' & '/subword_units_map_drug_chembl.csv': Using ChEMBL drug SMILES (~2M) with minimum frequency 100. This generates ~23,000 substructures.
- 'codes_drug_chembl_1500.txt' & '/subword_units_map_drug_chembl_1500.csv': Using ChEMBL drug SMILES (~2M) with minimum frequency 1500. This generates ~2,700 substructures. We find this already has good predictive performance.
Generate New ESPF with your own Dataset
As ESPF is a data-driven algorithm, we find sometimes it is better to generate a customized partition set for your own dataset in hand.
Generation: this notebook is a tutorial to generate your own ESPF.
Cite
@article{espf,
author = {Kexin Huang, Cao Xiao, Lucas Glass, Jimeng Sun},
title = {Explainable Substructure Partition Fingerprint for Protein, Drug, and More},
year = {2019},
journal = {NeurIPS Learning Meaningful Representation of Life Workshop},
}