cs-dm
cs-dm copied to clipboard
Ill-made Question 13, Exam Review 2
Question 13 says
Use example to prove that for all proposition, P, Q, and R, if P → Q → R then P → R.
This is not correct. I can prove it's false. See my piazza post
theorem exist_not_not_forall :
∀ (α : Type) (P : α → Prop), (∃ x, ¬ P x) → ¬ (∀ x, P x) :=
begin
assume α P,
assume h,
assume f,
apply exists.elim h,
assume a npa,
have : P a, from f a,
show false, from npa this
end
example : ¬(∀ {P Q R : Prop}, (P → Q → R) → (P → R)) :=
begin
apply exist_not_not_forall,
apply exists.intro true,
apply exist_not_not_forall,
apply exists.intro false,
apply exist_not_not_forall,
apply exists.intro false,
assume h,
have : true → false → false,
assume t f, assumption,
have : true → false, from h this,
show false, from this true.intro
end