how to get correct 15min value by using resample_apply with 1min data
Expected Behavior
Expected data should same as this high = pd.DataFrame({'high': self.data.High}, index=self.data.index).resample('15min').agg('max').dropna().values[:, 0][-500:]
Actual Behavior
but when i use self.High = resample_apply('15min', None, self.data.High) and print( self.High[-1], high[-1]), the value of self.high is incorrect, but high[-1] is corrct.
Steps to Reproduce
python code goes here
Additional info
- Backtesting version: 0.?.?
bokeh.__version__:- OS:
I get better results by resampling the dataframe prior to using it in the backtest:
e.g
import pandas as pd import yfinance as yf
df = yf.download('AAPL', period='5y', interval='1d') # rounding=True
df1 = df.resample('2d').agg({'Open': 'first', 'High': 'max', 'Low': 'min', 'Close': 'last', 'Volume': 'sum'})
Hope it helps
high = pd.DataFrame({'high': self.data.High}, index=self.data.index).resample('15min').agg('max').dropna().values[:, 0][-500:]
You should have compared with label="right":
high = self.data.High.s.resample('15min', label='right').agg('max') ...
or at least that's what resample_apply() does.