I will encounter problems when training to validation, which is 1000 steps
Traceback (most recent call last):███████████████████████████████████████████████████████████████████████████| 99/99 [12:35<00:00, 2.46s/it]
File "train.py", line 321, in | 0/4 [00:00<?, ?it/s]
main(args, configs)
File "train.py", line 196, in main
figs, wav_reconstruction, wav_prediction, tag = synth_one_sample(
File "/home/wxk/diff/DiffGAN-TTS-main/utils/tools.py", line 227, in synth_one_sample
mels = [mel_pred[0, :mel_len].float().detach().transpose(0, 1) for mel_pred in diffusion.sampling(cond=cond)]
File "/home/wxk/anaconda3/envs/diffgan/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/home/wxk/diff/DiffGAN-TTS-main/model/diffusion.py", line 162, in sampling
x = self.p_sample(xs[-1], torch.full((b,), i, device=device, dtype=torch.long), cond, spk_emb)
File "/home/wxk/anaconda3/envs/diffgan/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/home/wxk/diff/DiffGAN-TTS-main/model/diffusion.py", line 124, in p_sample
x_0_pred = self.denoise_fn(x_t, t, cond, spk_emb)
File "/home/wxk/anaconda3/envs/diffgan/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/wxk/diff/DiffGAN-TTS-main/model/modules.py", line 618, in forward
x, skip_connection = layer(x, conditioner, diffusion_step, speaker_emb)
File "/home/wxk/anaconda3/envs/diffgan/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/wxk/diff/DiffGAN-TTS-main/model/blocks.py", line 670, in forward
conditioner = self.conditioner_projection(conditioner)
File "/home/wxk/anaconda3/envs/diffgan/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/wxk/diff/DiffGAN-TTS-main/model/blocks.py", line 191, in forward
conv_signal = self.conv(signal)
File "/home/wxk/anaconda3/envs/diffgan/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/wxk/anaconda3/envs/diffgan/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 307, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/home/wxk/anaconda3/envs/diffgan/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 303, in _conv_forward
return F.conv1d(input, weight, bias, self.stride,
RuntimeError: Given groups=1, weight of size [256, 256, 1], expected input[32, 839, 256] to have 256 channels, but got 839 channels instead
How should we solve this