rl_pytorch
rl_pytorch copied to clipboard
Deep Reinforcement Learning Algorithms Implementation in PyTorch
Deep RL Algorithms in PyTorch
Models
- DQN
- Dueling Double DQN
- Categorical DQN (C51)
- Categotical Dueling Double DQN
- Proximal Policy Optimization (PPO)
- discrete (episodic, n-step)
- Soft Actor-Critic (SAC)
- debugging
- debugging
Exploration
- Random Network Distillation (RND)
Experiments
The result of passing the environment-defined "solving" criteria.
- Dueling Double DQN
- Only one hyperparameter "UP_COEF" was adjusted.
CartPole-v0

CartPole-v1

MountainCar-v0

LunarLander-v2

TODO
- Quantile Regression DQN (QR DQN)
- Implicit Quantile Networks (IQN)
- Intrinsic Curiosity Module (ICM)
- Rainbow
- Parametric DQN
- Proximal Policy Optimization (PPO)
- continuous
- Deep Deterministic Policy Gradient (DDPG)
- MCTS Net
- Parallel Models
- Ape-X
- R2D2
- PAAC