Practical_NLP_in_PyTorch icon indicating copy to clipboard operation
Practical_NLP_in_PyTorch copied to clipboard

SciBert embedding

Open Mayar2009 opened this issue 4 years ago • 0 comments

Hi! what if I want to use scibert embedding in my model is it enough just to replace this code : `from allennlp.data.token_indexers import PretrainedBertIndexer

token_indexer = PretrainedBertIndexer( pretrained_model="bert-base-uncased", max_pieces=config.max_seq_len, do_lowercase=True, )

def tokenizer(s: str): return token_indexer.wordpiece_tokenizer(s)[:config.max_seq_len - 2]`

by this code

` from allennlp.data.token_indexers import PretrainedBertIndexer

token_indexer = PretrainedBertIndexer( pretrained_model="scibert-scivocab-uncased", max_pieces=config.max_seq_len, do_lowercase=True, )

def tokenizer(s: str): return token_indexer.wordpiece_tokenizer(s)[:config.max_seq_len - 2]`

Mayar2009 avatar Aug 15 '20 13:08 Mayar2009