Self-Cure-Network
Self-Cure-Network copied to clipboard
python test.py
When I run:
Traceback (most recent call last):
File "test.py", line 52, in
The code:
模型存储路径
model_save_path = "./models/ijba_res18_naive.pth.tar"#修改为你自己保存下来的模型文件 img_path = "./test.jpg"#待测试照片位置
res18 = Res18Feature(pretrained = False) checkpoint = torch.load(model_save_path) res18.load_state_dict(checkpoint['model_state_dict'])
I am a beginner of facial expression recognition, can you help me?
Replace
res18.load_state_dict(checkpoint['model_state_dict'])
To
res18.load_state_dict(checkpoint['state_dict'])
@7109029214 按你的方式改完后,新出问题: RuntimeError: Error(s) in loading state_dict for Res18Feature: Missing key(s) in state_dict: "features.0.weight", "features.1.weight", "features.1.bias", "features.1.running_mean", "features.1.running_var", "features.4.0.conv1.weight", "features.4.0.bn1.weight", "features.4.0.bn1.bias", "features.4.0.bn1.running_mean", "features.4.0.bn1.running_var", "features.4.0.conv2.weight", "features.4.0.bn2.weight", "features.4.0.bn2.bias", "features.4.0.bn2.running_mean", "features.4.0.bn2.running_var", "features.4.1.conv1.weight", "features.4.1.bn1.weight", "features.4.1.bn1.bias", "features.4.1.bn1.running_mean", "features.4.1.bn1.running_var", "features.4.1.conv2.weight", "features.4.1.bn2.weight", "features.4.1.bn2.bias", "features.4.1.bn2.running_mean", "features.4.1.bn2.running_var", "features.5.0.conv1.weight", "features.5.0.bn1.weight", "features.5.0.bn1.bias", "features.5.0.bn1.running_mean", "features.5.0.bn1.running_var", "features.5.0.conv2.weight", "features.5.0.bn2.weight", "features.5.0.bn2.bias", "features.5.0.bn2.running_mean", "features.5.0.bn2.running_var", "features.5.0.downsample.0.weight", "features.5.0.downsample.1.weight", "features.5.0.downsample.1.bias", "features.5.0.downsample.1.running_mean", "features.5.0.downsample.1.running_var", "features.5.1.conv1.weight", "features.5.1.bn1.weight", "features.5.1.bn1.bias", "features.5.1.bn1.running_mean", "features.5.1.bn1.running_var", "features.5.1.conv2.weight", "features.5.1.bn2.weight", "features.5.1.bn2.bias", "features.5.1.bn2.running_mean", "features.5.1.bn2.running_var", "features.6.0.conv1.weight", "features.6.0.bn1.weight", "features.6.0.bn1.bias", "features.6.0.bn1.running_mean", "features.6.0.bn1.running_var", "features.6.0.conv2.weight", "features.6.0.bn2.weight", "features.6.0.bn2.bias", "features.6.0.bn2.running_mean", "features.6.0.bn2.running_var", "features.6.0.downsample.0.weight", "features.6.0.downsample.1.weight", "features.6.0.downsample.1.bias", "features.6.0.downsample.1.running_mean", "features.6.0.downsample.1.running_var", "features.6.1.conv1.weight", "features.6.1.bn1.weight", "features.6.1.bn1.bias", "features.6.1.bn1.running_mean", "features.6.1.bn1.running_var", "features.6.1.conv2.weight", "features.6.1.bn2.weight", "features.6.1.bn2.bias", "features.6.1.bn2.running_mean", "features.6.1.bn2.running_var", "features.7.0.conv1.weight", "features.7.0.bn1.weight", "features.7.0.bn1.bias", "features.7.0.bn1.running_mean", "features.7.0.bn1.running_var", "features.7.0.conv2.weight", "features.7.0.bn2.weight", "features.7.0.bn2.bias", "features.7.0.bn2.running_mean", "features.7.0.bn2.running_var", "features.7.0.downsample.0.weight", "features.7.0.downsample.1.weight", "features.7.0.downsample.1.bias", "features.7.0.downsample.1.running_mean", "features.7.0.downsample.1.running_var", "features.7.1.conv1.weight", "features.7.1.bn1.weight", "features.7.1.bn1.bias", "features.7.1.bn1.running_mean", "features.7.1.bn1.running_var", "features.7.1.conv2.weight", "features.7.1.bn2.weight", "features.7.1.bn2.bias", "features.7.1.bn2.running_mean", "features.7.1.bn2.running_var", "fc.weight", "fc.bias", "alpha.0.weight", "alpha.0.bias". Unexpected key(s) in state_dict: "module.conv1.weight", "module.bn1.weight", "module.bn1.bias", "module.bn1.running_mean", "module.bn1.running_var", "module.layer1.0.conv1.weight", "module.layer1.0.bn1.weight", "module.layer1.0.bn1.bias", "module.layer1.0.bn1.running_mean", "module.layer1.0.bn1.running_var", "module.layer1.0.conv2.weight", "module.layer1.0.bn2.weight", "module.layer1.0.bn2.bias", "module.layer1.0.bn2.running_mean", "module.layer1.0.bn2.running_var", "module.layer1.1.conv1.weight", "module.layer1.1.bn1.weight", "module.layer1.1.bn1.bias", "module.layer1.1.bn1.running_mean", "module.layer1.1.bn1.running_var", "module.layer1.1.conv2.weight", "module.layer1.1.bn2.weight", "module.layer1.1.bn2.bias", "module.layer1.1.bn2.running_mean", "module.layer1.1.bn2.running_var", "module.layer2.0.conv1.weight", "module.layer2.0.bn1.weight", "module.layer2.0.bn1.bias", "module.layer2.0.bn1.running_mean", "module.layer2.0.bn1.running_var", "module.layer2.0.conv2.weight", "module.layer2.0.bn2.weight", "module.layer2.0.bn2.bias", "module.layer2.0.bn2.running_mean", "module.layer2.0.bn2.running_var", "module.layer2.0.downsample.0.weight", "module.layer2.0.downsample.1.weight", "module.layer2.0.downsample.1.bias", "module.layer2.0.downsample.1.running_mean", "module.layer2.0.downsample.1.running_var", "module.layer2.1.conv1.weight", "module.layer2.1.bn1.weight", "module.layer2.1.bn1.bias", "module.layer2.1.bn1.running_mean", "module.layer2.1.bn1.running_var", "module.layer2.1.conv2.weight", "module.layer2.1.bn2.weight", "module.layer2.1.bn2.bias", "module.layer2.1.bn2.running_mean", "module.layer2.1.bn2.running_var", "module.layer3.0.conv1.weight", "module.layer3.0.bn1.weight", "module.layer3.0.bn1.bias", "module.layer3.0.bn1.running_mean", "module.layer3.0.bn1.running_var", "module.layer3.0.conv2.weight", "module.layer3.0.bn2.weight", "module.layer3.0.bn2.bias", "module.layer3.0.bn2.running_mean", "module.layer3.0.bn2.running_var", "module.layer3.0.downsample.0.weight", "module.layer3.0.downsample.1.weight", "module.layer3.0.downsample.1.bias", "module.layer3.0.downsample.1.running_mean", "module.layer3.0.downsample.1.running_var", "module.layer3.1.conv1.weight", "module.layer3.1.bn1.weight", "module.layer3.1.bn1.bias", "module.layer3.1.bn1.running_mean", "module.layer3.1.bn1.running_var", "module.layer3.1.conv2.weight", "module.layer3.1.bn2.weight", "module.layer3.1.bn2.bias", "module.layer3.1.bn2.running_mean", "module.layer3.1.bn2.running_var", "module.layer4.0.conv1.weight", "module.layer4.0.bn1.weight", "module.layer4.0.bn1.bias", "module.layer4.0.bn1.running_mean", "module.layer4.0.bn1.running_var", "module.layer4.0.conv2.weight", "module.layer4.0.bn2.weight", "module.layer4.0.bn2.bias", "module.layer4.0.bn2.running_mean", "module.layer4.0.bn2.running_var", "module.layer4.0.downsample.0.weight", "module.layer4.0.downsample.1.weight", "module.layer4.0.downsample.1.bias", "module.layer4.0.downsample.1.running_mean", "module.layer4.0.downsample.1.running_var", "module.layer4.1.conv1.weight", "module.layer4.1.bn1.weight", "module.layer4.1.bn1.bias", "module.layer4.1.bn1.running_mean", "module.layer4.1.bn1.running_var", "module.layer4.1.conv2.weight", "module.layer4.1.bn2.weight", "module.layer4.1.bn2.bias", "module.layer4.1.bn2.running_mean", "module.layer4.1.bn2.running_var", "module.feature.weight", "module.feature.bias", "module.fc.weight", "module.fc.bias".
@7109029214 按你的方式改完后,新出问题: RuntimeError: Error(s) in loading state_dict for Res18Feature: Missing key(s) in state_dict: "features.0.weight", "features.1.weight", "features.1.bias", "features.1.running_mean", "features.1.running_var", "features.4.0.conv1.weight", "features.4.0.bn1.weight", "features.4.0.bn1.bias", "features.4.0.bn1.running_mean", "features.4.0.bn1.running_var", "features.4.0.conv2.weight", "features.4.0.bn2.weight", "features.4.0.bn2.bias", "features.4.0.bn2.running_mean", "features.4.0.bn2.running_var", "features.4.1.conv1.weight", "features.4.1.bn1.weight", "features.4.1.bn1.bias", "features.4.1.bn1.running_mean", "features.4.1.bn1.running_var", "features.4.1.conv2.weight", "features.4.1.bn2.weight", "features.4.1.bn2.bias", "features.4.1.bn2.running_mean", "features.4.1.bn2.running_var", "features.5.0.conv1.weight", "features.5.0.bn1.weight", "features.5.0.bn1.bias", "features.5.0.bn1.running_mean", "features.5.0.bn1.running_var", "features.5.0.conv2.weight", "features.5.0.bn2.weight", "features.5.0.bn2.bias", "features.5.0.bn2.running_mean", "features.5.0.bn2.running_var", "features.5.0.downsample.0.weight", "features.5.0.downsample.1.weight", "features.5.0.downsample.1.bias", "features.5.0.downsample.1.running_mean", "features.5.0.downsample.1.running_var", "features.5.1.conv1.weight", "features.5.1.bn1.weight", "features.5.1.bn1.bias", "features.5.1.bn1.running_mean", "features.5.1.bn1.running_var", "features.5.1.conv2.weight", "features.5.1.bn2.weight", "features.5.1.bn2.bias", "features.5.1.bn2.running_mean", "features.5.1.bn2.running_var", "features.6.0.conv1.weight", "features.6.0.bn1.weight", "features.6.0.bn1.bias", "features.6.0.bn1.running_mean", "features.6.0.bn1.running_var", "features.6.0.conv2.weight", "features.6.0.bn2.weight", "features.6.0.bn2.bias", "features.6.0.bn2.running_mean", "features.6.0.bn2.running_var", "features.6.0.downsample.0.weight", "features.6.0.downsample.1.weight", "features.6.0.downsample.1.bias", "features.6.0.downsample.1.running_mean", "features.6.0.downsample.1.running_var", "features.6.1.conv1.weight", "features.6.1.bn1.weight", "features.6.1.bn1.bias", "features.6.1.bn1.running_mean", "features.6.1.bn1.running_var", "features.6.1.conv2.weight", "features.6.1.bn2.weight", "features.6.1.bn2.bias", "features.6.1.bn2.running_mean", "features.6.1.bn2.running_var", "features.7.0.conv1.weight", "features.7.0.bn1.weight", "features.7.0.bn1.bias", "features.7.0.bn1.running_mean", "features.7.0.bn1.running_var", "features.7.0.conv2.weight", "features.7.0.bn2.weight", "features.7.0.bn2.bias", "features.7.0.bn2.running_mean", "features.7.0.bn2.running_var", "features.7.0.downsample.0.weight", "features.7.0.downsample.1.weight", "features.7.0.downsample.1.bias", "features.7.0.downsample.1.running_mean", "features.7.0.downsample.1.running_var", "features.7.1.conv1.weight", "features.7.1.bn1.weight", "features.7.1.bn1.bias", "features.7.1.bn1.running_mean", "features.7.1.bn1.running_var", "features.7.1.conv2.weight", "features.7.1.bn2.weight", "features.7.1.bn2.bias", "features.7.1.bn2.running_mean", "features.7.1.bn2.running_var", "fc.weight", "fc.bias", "alpha.0.weight", "alpha.0.bias". Unexpected key(s) in state_dict: "module.conv1.weight", "module.bn1.weight", "module.bn1.bias", "module.bn1.running_mean", "module.bn1.running_var", "module.layer1.0.conv1.weight", "module.layer1.0.bn1.weight", "module.layer1.0.bn1.bias", "module.layer1.0.bn1.running_mean", "module.layer1.0.bn1.running_var", "module.layer1.0.conv2.weight", "module.layer1.0.bn2.weight", "module.layer1.0.bn2.bias", "module.layer1.0.bn2.running_mean", "module.layer1.0.bn2.running_var", "module.layer1.1.conv1.weight", "module.layer1.1.bn1.weight", "module.layer1.1.bn1.bias", "module.layer1.1.bn1.running_mean", "module.layer1.1.bn1.running_var", "module.layer1.1.conv2.weight", "module.layer1.1.bn2.weight", "module.layer1.1.bn2.bias", "module.layer1.1.bn2.running_mean", "module.layer1.1.bn2.running_var", "module.layer2.0.conv1.weight", "module.layer2.0.bn1.weight", "module.layer2.0.bn1.bias", "module.layer2.0.bn1.running_mean", "module.layer2.0.bn1.running_var", "module.layer2.0.conv2.weight", "module.layer2.0.bn2.weight", "module.layer2.0.bn2.bias", "module.layer2.0.bn2.running_mean", "module.layer2.0.bn2.running_var", "module.layer2.0.downsample.0.weight", "module.layer2.0.downsample.1.weight", "module.layer2.0.downsample.1.bias", "module.layer2.0.downsample.1.running_mean", "module.layer2.0.downsample.1.running_var", "module.layer2.1.conv1.weight", "module.layer2.1.bn1.weight", "module.layer2.1.bn1.bias", "module.layer2.1.bn1.running_mean", "module.layer2.1.bn1.running_var", "module.layer2.1.conv2.weight", "module.layer2.1.bn2.weight", "module.layer2.1.bn2.bias", "module.layer2.1.bn2.running_mean", "module.layer2.1.bn2.running_var", "module.layer3.0.conv1.weight", "module.layer3.0.bn1.weight", "module.layer3.0.bn1.bias", "module.layer3.0.bn1.running_mean", "module.layer3.0.bn1.running_var", "module.layer3.0.conv2.weight", "module.layer3.0.bn2.weight", "module.layer3.0.bn2.bias", "module.layer3.0.bn2.running_mean", "module.layer3.0.bn2.running_var", "module.layer3.0.downsample.0.weight", "module.layer3.0.downsample.1.weight", "module.layer3.0.downsample.1.bias", "module.layer3.0.downsample.1.running_mean", "module.layer3.0.downsample.1.running_var", "module.layer3.1.conv1.weight", "module.layer3.1.bn1.weight", "module.layer3.1.bn1.bias", "module.layer3.1.bn1.running_mean", "module.layer3.1.bn1.running_var", "module.layer3.1.conv2.weight", "module.layer3.1.bn2.weight", "module.layer3.1.bn2.bias", "module.layer3.1.bn2.running_mean", "module.layer3.1.bn2.running_var", "module.layer4.0.conv1.weight", "module.layer4.0.bn1.weight", "module.layer4.0.bn1.bias", "module.layer4.0.bn1.running_mean", "module.layer4.0.bn1.running_var", "module.layer4.0.conv2.weight", "module.layer4.0.bn2.weight", "module.layer4.0.bn2.bias", "module.layer4.0.bn2.running_mean", "module.layer4.0.bn2.running_var", "module.layer4.0.downsample.0.weight", "module.layer4.0.downsample.1.weight", "module.layer4.0.downsample.1.bias", "module.layer4.0.downsample.1.running_mean", "module.layer4.0.downsample.1.running_var", "module.layer4.1.conv1.weight", "module.layer4.1.bn1.weight", "module.layer4.1.bn1.bias", "module.layer4.1.bn1.running_mean", "module.layer4.1.bn1.running_var", "module.layer4.1.conv2.weight", "module.layer4.1.bn2.weight", "module.layer4.1.bn2.bias", "module.layer4.1.bn2.running_mean", "module.layer4.1.bn2.running_var", "module.feature.weight", "module.feature.bias", "module.fc.weight", "module.fc.bias".
hello,did u solve this problem?I met the same problem.
load的时候,把keys检查下,就差一个module.
Zhuoyi416 @.***> 於 2022年4月12日週二 下午4:05寫道:
@7109029214 https://github.com/7109029214 按你的方式改完后,新出问题: RuntimeError: Error(s) in loading state_dict for Res18Feature: Missing key(s) in state_dict: "features.0.weight", "features.1.weight", "features.1.bias", "features.1.running_mean", "features.1.running_var", "features.4.0.conv1.weight", "features.4.0.bn1.weight", "features.4.0.bn1.bias", "features.4.0.bn1.running_mean", "features.4.0.bn1.running_var", "features.4.0.conv2.weight", "features.4.0.bn2.weight", "features.4.0.bn2.bias", "features.4.0.bn2.running_mean", "features.4.0.bn2.running_var", "features.4.1.conv1.weight", "features.4.1.bn1.weight", "features.4.1.bn1.bias", "features.4.1.bn1.running_mean", "features.4.1.bn1.running_var", "features.4.1.conv2.weight", "features.4.1.bn2.weight", "features.4.1.bn2.bias", "features.4.1.bn2.running_mean", "features.4.1.bn2.running_var", "features.5.0.conv1.weight", "features.5.0.bn1.weight", "features.5.0.bn1.bias", "features.5.0.bn1.running_mean", "features.5.0.bn1.running_var", "features.5.0.conv2.weight", "features.5.0.bn2.weight", "features.5.0.bn2.bias", "features.5.0.bn2.running_mean", "features.5.0.bn2.running_var", "features.5.0.downsample.0.weight", "features.5.0.downsample.1.weight", "features.5.0.downsample.1.bias", "features.5.0.downsample.1.running_mean", "features.5.0.downsample.1.running_var", "features.5.1.conv1.weight", "features.5.1.bn1.weight", "features.5.1.bn1.bias", "features.5.1.bn1.running_mean", "features.5.1.bn1.running_var", "features.5.1.conv2.weight", "features.5.1.bn2.weight", "features.5.1.bn2.bias", "features.5.1.bn2.running_mean", "features.5.1.bn2.running_var", "features.6.0.conv1.weight", "features.6.0.bn1.weight", "features.6.0.bn1.bias", "features.6.0.bn1.running_mean", "features.6.0.bn1.running_var", "features.6.0.conv2.weight", "features.6.0.bn2.weight", "features.6.0.bn2.bias", "features.6.0.bn2.running_mean", "features.6.0.bn2.running_var", "features.6.0.downsample.0.weight", "features.6.0.downsample.1.weight", "features.6.0.downsample.1.bias", "features.6.0.downsample.1.running_mean", "features.6.0.downsample.1.running_var", "features.6.1.conv1.weight", "features.6.1.bn1.weight", "features.6.1.bn1.bias", "features.6.1.bn1.running_mean", "features.6.1.bn1.running_var", "features.6.1.conv2.weight", "features.6.1.bn2.weight", "features.6.1.bn2.bias", "features.6.1.bn2.running_mean", "features.6.1.bn2.running_var", "features.7.0.conv1.weight", "features.7.0.bn1.weight", "features.7.0.bn1.bias", "features.7.0.bn1.running_mean", "features.7.0.bn1.running_var", "features.7.0.conv2.weight", "features.7.0.bn2.weight", "features.7.0.bn2.bias", "features.7.0.bn2.running_mean", "features.7.0.bn2.running_var", "features.7.0.downsample.0.weight", "features.7.0.downsample.1.weight", "features.7.0.downsample.1.bias", "features.7.0.downsample.1.running_mean", "features.7.0.downsample.1.running_var", "features.7.1.conv1.weight", "features.7.1.bn1.weight", "features.7.1.bn1.bias", "features.7.1.bn1.running_mean", "features.7.1.bn1.running_var", "features.7.1.conv2.weight", "features.7.1.bn2.weight", "features.7.1.bn2.bias", "features.7.1.bn2.running_mean", "features.7.1.bn2.running_var", "fc.weight", "fc.bias", "alpha.0.weight", "alpha.0.bias". Unexpected key(s) in state_dict: "module.conv1.weight", "module.bn1.weight", "module.bn1.bias", "module.bn1.running_mean", "module.bn1.running_var", "module.layer1.0.conv1.weight", "module.layer1.0.bn1.weight", "module.layer1.0.bn1.bias", "module.layer1.0.bn1.running_mean", "module.layer1.0.bn1.running_var", "module.layer1.0.conv2.weight", "module.layer1.0.bn2.weight", "module.layer1.0.bn2.bias", "module.layer1.0.bn2.running_mean", "module.layer1.0.bn2.running_var", "module.layer1.1.conv1.weight", "module.layer1.1.bn1.weight", "module.layer1.1.bn1.bias", "module.layer1.1.bn1.running_mean", "module.layer1.1.bn1.running_var", "module.layer1.1.conv2.weight", "module.layer1.1.bn2.weight", "module.layer1.1.bn2.bias", "module.layer1.1.bn2.running_mean", "module.layer1.1.bn2.running_var", "module.layer2.0.conv1.weight", "module.layer2.0.bn1.weight", "module.layer2.0.bn1.bias", "module.layer2.0.bn1.running_mean", "module.layer2.0.bn1.running_var", "module.layer2.0.conv2.weight", "module.layer2.0.bn2.weight", "module.layer2.0.bn2.bias", "module.layer2.0.bn2.running_mean", "module.layer2.0.bn2.running_var", "module.layer2.0.downsample.0.weight", "module.layer2.0.downsample.1.weight", "module.layer2.0.downsample.1.bias", "module.layer2.0.downsample.1.running_mean", "module.layer2.0.downsample.1.running_var", "module.layer2.1.conv1.weight", "module.layer2.1.bn1.weight", "module.layer2.1.bn1.bias", "module.layer2.1.bn1.running_mean", "module.layer2.1.bn1.running_var", "module.layer2.1.conv2.weight", "module.layer2.1.bn2.weight", "module.layer2.1.bn2.bias", "module.layer2.1.bn2.running_mean", "module.layer2.1.bn2.running_var", "module.layer3.0.conv1.weight", "module.layer3.0.bn1.weight", "module.layer3.0.bn1.bias", "module.layer3.0.bn1.running_mean", "module.layer3.0.bn1.running_var", "module.layer3.0.conv2.weight", "module.layer3.0.bn2.weight", "module.layer3.0.bn2.bias", "module.layer3.0.bn2.running_mean", "module.layer3.0.bn2.running_var", "module.layer3.0.downsample.0.weight", "module.layer3.0.downsample.1.weight", "module.layer3.0.downsample.1.bias", "module.layer3.0.downsample.1.running_mean", "module.layer3.0.downsample.1.running_var", "module.layer3.1.conv1.weight", "module.layer3.1.bn1.weight", "module.layer3.1.bn1.bias", "module.layer3.1.bn1.running_mean", "module.layer3.1.bn1.running_var", "module.layer3.1.conv2.weight", "module.layer3.1.bn2.weight", "module.layer3.1.bn2.bias", "module.layer3.1.bn2.running_mean", "module.layer3.1.bn2.running_var", "module.layer4.0.conv1.weight", "module.layer4.0.bn1.weight", "module.layer4.0.bn1.bias", "module.layer4.0.bn1.running_mean", "module.layer4.0.bn1.running_var", "module.layer4.0.conv2.weight", "module.layer4.0.bn2.weight", "module.layer4.0.bn2.bias", "module.layer4.0.bn2.running_mean", "module.layer4.0.bn2.running_var", "module.layer4.0.downsample.0.weight", "module.layer4.0.downsample.1.weight", "module.layer4.0.downsample.1.bias", "module.layer4.0.downsample.1.running_mean", "module.layer4.0.downsample.1.running_var", "module.layer4.1.conv1.weight", "module.layer4.1.bn1.weight", "module.layer4.1.bn1.bias", "module.layer4.1.bn1.running_mean", "module.layer4.1.bn1.running_var", "module.layer4.1.conv2.weight", "module.layer4.1.bn2.weight", "module.layer4.1.bn2.bias", "module.layer4.1.bn2.running_mean", "module.layer4.1.bn2.running_var", "module.feature.weight", "module.feature.bias", "module.fc.weight", "module.fc.bias".
hello,did u solve this problem?I met the same problem.
— Reply to this email directly, view it on GitHub https://github.com/kaiwang960112/Self-Cure-Network/issues/47#issuecomment-1096312473, or unsubscribe https://github.com/notifications/unsubscribe-auth/AI6LK4HSKLLA443SCEWMFWLVEUVERANCNFSM43ST4FUA . You are receiving this because you are subscribed to this thread.Message ID: @.***>
怎么可能只差一个module,你仔细看下好不,features.0.weight 和 module.conv1.weight 怎么差一个module???