LocalRetro
LocalRetro copied to clipboard
Retrosynthesis prediction for organic molecules with LocalRetro
LocalRetro
Implementation of Retrosynthesis Prediction with LocalRetro developed by prof. Yousung Jung group at KAIST (now moved to SNU, contact: [email protected]).
Announcements
2024.05.30 update
The open-source license and part of the codes are removed from our project on 2024.05.30.
Developer
Shuan Chen (contact: [email protected])
Requirements
- Python (version >= 3.6)
- Numpy (version >= 1.16.4)
- PyTorch (version >= 1.0.0)
- RDKit (version >= 2019)
- DGL (version >= 0.5.2)
- DGLLife (version >= 0.2.6)
Requirements
Create a virtual environment to run the code of LocalRetro.
Install pytorch with the cuda version that fits your device.
cd LocalRetro
conda create -c conda-forge -n rdenv python=3.7 -y
conda activate rdenv
conda install pytorch cudatoolkit=10.2 -c pytorch -y
conda install -c conda-forge rdkit -y
pip install dgl
pip install dgllife
Publication
Shuan Chen and Yousung Jung. Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention, JACS Au 2021.
Usage
[1] Download the raw data of USPTO-50K or USPTO-MIT dataset
See the README in ./data
to download the raw data files for training and testing the model.
[2] Data preprocessing
A two-step data preprocessing is needed to train the LocalRetro model.
1) Local reaction template derivation
First go to the data processing folder
cd preprocessing
and extract the reaction template with specified dataset name (default: USPTO_50K).
python Extract_from_train_data.py -d USPTO_50K
This will give you four files, including
(1) atom_templates.csv
(2) bond_templates.csv
(3) template_infos.csv
(4) template_rxnclass.csv (if train_class.csv exists in data folder)
2) Assign the derived templates to raw data
By running
python Run_preprocessing.py -d USPTO_50K
You can get four preprocessed files, including
(1) preprocessed_train.csv
(2) preprocessed_val.csv
(3) preprocessed_test.csv
(4) labeled_data.csv
[3] Train LocalRetro model
Go to the localretro folder
cd ../scripts
and run the following to train the model with specified dataset (default: USPTO_50K)
python Train.py -d USPTO_50K
The trained model will be saved at LocalRetro/models/LocalRetro_USPTO_50K.pth
[4] Test LocalRetro model
To use the model to test on test set, simply run
python Test.py -d USPTO_50K
to get the raw prediction file saved at LocalRetro/outputs/raw_prediction/LocalRetro_USPTO_50K.txt
Finally you can get the reactants of each prediciton by decoding the raw prediction file
python Decode_predictions.py -d USPTO_50K
The decoded reactants will be saved at
LocalRetro/outputs/decoded_prediction/LocalRetro_USPTO_50K.txt
and
LocalRetro/outputs/decoded_prediction_class/LocalRetro_USPTO_50K.txt