blog icon indicating copy to clipboard operation
blog copied to clipboard

Python从入门到入坑之:函数

Open kaindy7633 opened this issue 3 years ago • 0 comments

Table of Contents generated with DocToc

  • 前言
  • 调用函数
    • 内置函数
    • 数据类型转换
  • 定义函数
    • 定义
    • 空函数
    • 参数检查
    • 返回多个值
  • 函数的参数
    • 位置参数
    • 默认参数
    • 可变参数
    • 关键字参数
    • 命名关键字参数
    • 参数组合
  • 递归函数

前言

当我们写代码的时候,发现有规律的重复的逻辑,我们自然就会想到把这部分功能封装成一个函数,基本上所有的高级语言都支持函数,Python也不例外。Python不但能非常灵活地定义函数,而且本身内置了很多有用的函数,可以直接调用。

抽象是数学中非常常见的概念。举个例子:

计算数列的和,比如:1 + 2 + 3 + ... + 100,写起来十分不方便,于是数学家发明了求和符号,可以把 1 + 2 + 3 + ... + 100 记作:

100
∑n
n=1

这种抽象记法非常强大,因为我们看到 就可以理解成求和,而不是还原成低级的加法运算。

而且,这种抽象记法是可扩展的,比如:

100
∑(n2+1)
n=1

还原成加法运算就变成了:

(1 x 1 + 1) + (2 x 2 + 1) + (3 x 3 + 1) + ... + (100 x 100 + 1)

可见,借助抽象,我们才能不关心底层的具体计算过程,而直接在更高的层次上思考问题。

写计算机程序也是一样,函数就是最基本的一种代码抽象的方式。

调用函数

内置函数

Python内置了很多有用的函数,我们可以直接调用。

要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数 abs ,只有一个参数。可以直接从Python的官方网站查看文档:http://docs.python.org/3/library/functions.html#abs

也可以在交互式命令行通过 help(abs) 查看 abs 函数的帮助信息。

abs(100)
100
abs(-20)
20
abs(12.34)
12.34

调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且Python会明确地告诉你:abs() 有且仅有1个参数,但给出了两个:

abs(1, 2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: abs() takes exactly one argument (2 given)

如果传入的参数数量是对的,但参数类型不能被函数所接受,也会报TypeError的错误,并且给出错误信息:str是错误的参数类型:

abs('a')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'

函数 max() 则可以接收任意多个参数,并返回最大的那个:

max(1, 2)
2
max(2, 3, 1, -5)
3

数据类型转换

Python内置的常用函数还包括数据类型转换函数,比如 int() 函数可以把其他数据类型转换为整数:

int('123')
123
int(12.34)
12
float('12.34')
12.34
str(1.23)
'1.23'
str(100)
'100'
bool(1)
True
bool('')
False
bool(None)
False

函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个“别名”:

a = abs # 变量a指向abs函数
a(-1) # 所以也可以通过a调用abs函数
1

定义函数

定义

在Python中,定义一个函数要使用 def 语句,依次写出函数名、括号、括号中的参数和冒号 :,然后,在缩进块中编写函数体,函数的返回值用 return 语句返回。

我们以自定义一个求绝对值的 my_abs 函数为例:

def my_abs(x):
    if x > 0:
        return x
    else:
        return -x

请注意,函数体内部的语句在执行时,一旦执行到 return 时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。

如果没有 return 语句,函数执行完毕后也会返回结果,只是结果为 Nonereturn None 可以简写为return

空函数

如果想定义一个什么事也不做的空函数,可以用 pass 语句:

def nop():
    pass

pass 语句什么都不做,那有什么用?实际上 pass 可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个 pass,让代码能运行起来。

pass 还可以用在其他语句里,比如:

if age >= 18:
    pass # 如果缺少pass,运行就会报错

参数检查

调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError:

my_abs(1, 2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: my_abs() takes 1 positional argument but 2 were given

但是如果参数类型不对,Python解释器就无法帮我们检查,我们可以观察一下刚才我们定义的 my_abs 和Python内置的 abs 函数之间的差别:

my_abs('A')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in my_abs
TypeError: unorderable types: str() >= int()

abs('A')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'

当传入了不恰当的参数时,内置函数 abs 会检查出参数错误,而我们定义的 my_abs 没有参数检查,会导致 if语句出错,出错信息和 abs 不一样。所以,这个函数定义不够完善。

让我们修改一下 my_abs 的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance() 实现:

def my_abs(x):
    if not isinstance(x, (int, float)):
        raise TypeError('bad operand type')
    if x >= 0:
        return x
    else:
        return -x

添加了参数检查后,如果传入错误的参数类型,函数就可以抛出一个错误:

my_abs('A')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 3, in my_abs
TypeError: bad operand type

返回多个值

函数可以返回多个值吗?答案是肯定的。

比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的新的坐标:

import math

def move(x, y, step, angle=0):
    nx = x + step * math.cos(angle)
    ny = y - step * math.sin(angle)
    return nx, ny

import math 语句表示导入 math 包,并允许后续代码引用 math 包里的``sincos` 等函数。

然后,我们就可以同时获得返回值:

x, y = move(100, 100, 60, math.pi / 6)
print(x, y)
151.96152422706632 70.0

但其实这只是一种假象,Python函数返回的仍然是单一值:

r = move(100, 100, 60, math.pi / 6)
print(r)
(151.96152422706632, 70.0)

原来返回值是一个 tuple !但是,在语法上,返回一个 tuple 可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个 tuple,但写起来更方便。

函数的参数

定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

位置参数

我们先写一个计算x2的函数:

def power(x):
    return x * x

当我们调用power函数时,必须传入有且仅有的一个参数x:

power(5)
25
power(15)
225

现在,如果我们要计算x3怎么办?可以再定义一个power3函数,但是如果要计算x4、x5……怎么办?我们不可能定义无限多个函数。

我们可以把 power(x) 修改为 power(x, n) ,用来计算xn

def power(x, n):
    s = 1
    while n > 0:
        n = n - 1
        s = s * x
    return s

对于这个修改后的 power(x, n) 函数,可以计算任意n次方:

power(5, 2)
25
power(5, 3)
125

修改后的 power(x, n) 函数有两个参数:xn,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数 xn

默认参数

默认参数就是在定义函数时,给参数设定一个初始值:

def power(x, n=2):
    s = 1
    while n > 0:
        n = n - 1
        s = s * x
    return s

这样,当我们调用 power(5) 时,相当于调用 power(5, 2)

power(5)
25
power(5, 2)
25

默认参数可以简化函数的调用。设置默认参数时,有几点要注意:

  1. 是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);

  2. 如何设置默认参数。

当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。

使用默认参数有什么好处?最大的好处是能降低调用函数的难度。

举个例子,我们写个一年级小学生注册的函数,需要传入 namegender 两个参数:

def enroll(name, gender):
    print('name:', name)
    print('gender:', gender)

这样,调用 enroll() 函数只需要传入两个参数:

enroll('Sarah', 'F')
name: Sarah
gender: F

如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。

我们可以把年龄和城市设为默认参数:

def enroll(name, gender, age=6, city='Beijing'):
    print('name:', name)
    print('gender:', gender)
    print('age:', age)
    print('city:', city)

这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:

enroll('Sarah', 'F')
name: Sarah
gender: F
age: 6
city: Beijing

只有与默认参数不符的学生才需要提供额外的信息:

enroll('Bob', 'M', 7)
enroll('Adam', 'M', city='Tianjin')

默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调用还是复杂调用,函数只需要定义一个

有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用 enroll('Bob', 'M', 7),意思是,除了namegender 这两个参数外,最后1个参数应用在参数 age 上,city 参数由于没有提供,仍然使用默认值。

也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用 enroll('Adam', 'M', city='Tianjin'),意思是,city 参数用传进去的值,其他默认参数继续使用默认值。

默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑

先定义一个函数,传入一个 list,添加一个 END 再返回:

def add_end(L=[]):
    L.append('END')
    return L

当你正常调用时,结果似乎不错:

add_end([1, 2, 3])
[1, 2, 3, 'END']
add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']

当你使用默认参数调用时,一开始结果也是对的:

add_end()
['END']

但是,再次调用 add_end() 时,结果就不对了:

add_end()
['END', 'END']
add_end()
['END', 'END', 'END']

出现这种情况的原因是:Python函数在定义的时候,默认参数L的值就被计算出来了,即 [],因为默认参数L也是一个变量,它指向对象 [],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的 [] 了。

定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:

def add_end(L=None):
    if L is None:
        L = []
    L.append('END')
    return L

现在,无论调用多少次,都不会有问题:

add_end()
['END']
add_end()
['END']

为什么要设计 strNone 这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

可变参数

在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。

我们以数学题为例子,给定一组数字a,b,c……,请计算a2 + b2 + c2 + ……

要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c……作为一个listtuple 传进来,这样,函数可以定义如下:

def calc(numbers):
    sum = 0
    for n in numbers:
        sum = sum + n * n
    return sum

但是调用的时候,需要先组装出一个 listtuple

calc([1, 2, 3])
14
calc((1, 3, 5, 7))
84

现在,我们利用可变参数,修改这个函数:

def calc(*numbers):
    sum = 0
    for n in numbers:
        sum = sum + n * n
    return sum

然后就可以这样调用函数:

calc(1, 2, 3)
14
calc(1, 3, 5, 7)
84

定义可变参数和定义一个 listtuple 参数相比,仅仅在参数前面加了一个 * 号。在函数内部,参数numbers接收到的是一个 tuple ,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:

calc(1, 2)
5
calc()
0

但如果我就想传一个 listtuple 进去,怎么办呢? Python允许你在 listtuple 前面加一个 * 号,把 listtuple 的元素变成可变参数传进去:

ums = [1, 2, 3]
calc(*nums)
14

关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个 tuple

而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个 dict

def person(name, age, **kw):
    print('name:', name, 'age:', age, 'other:', kw)

函数 person 除了必选参数 nameage 外,还接受关键字参数 kw。在调用该函数时,可以只传入必选参数:

person('Michael', 30)
name: Michael age: 30 other: {}

也可以传入任意个数的关键字参数:

person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

关键字参数可以扩展函数的功能。比如,在 person 函数里,我们保证能接收到 nameage 这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个 dict,然后,把该 dict 转换为关键字参数传进去:

extra = {'city': 'Beijing', 'job': 'Engineer'}
person('Jack', 24, city=extra['city'], job=extra['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

上面的调用也可以简化:

extra = {'city': 'Beijing', 'job': 'Engineer'}
person('Jack', 24, **extra)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

**extra 表示把 extra 这个 dict 的所有 key-value 用关键字参数传入到函数的 **kw 参数,kw将获得一个 dict,注意kw获得的 dictextra 的一份拷贝,对kw的改动不会影响到函数外的 extra

命名关键字参数

对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw检查。

仍以 person() 函数为例,我们希望检查是否有 cityjob 参数:

def person(name, age, **kw):
    if 'city' in kw:
        # 有city参数
        pass
    if 'job' in kw:
        # 有job参数
        pass
    print('name:', name, 'age:', age, 'other:', kw)

但是调用者仍可以传入不受限制的关键字参数:

person('Jack', 24, city='Beijing', addr='Chaoyang', zipcode=123456)

如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收 cityjob 作为关键字参数。这种方式定义的函数如下:

def person(name, age, *, city, job):
    print(name, age, city, job)

和关键字参数 **kw 不同,命名关键字参数需要一个特殊分隔符 ** 后面的参数被视为命名关键字参数。

person('Jack', 24, city='Beijing', job='Engineer')
Jack 24 Beijing Engineer

如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符 * 了:

def person(name, age, *args, city, job):
    print(name, age, args, city, job)

命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错:

person('Jack', 24, 'Beijing', 'Engineer')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: person() takes 2 positional arguments but 4 were given

由于调用时缺少参数名 city job,Python解释器把这4个参数均视为位置参数,但 person() 函数仅接受2个位置参数。

命名关键字参数可以有缺省值,从而简化调用:

def person(name, age, *, city='Beijing', job):
    print(name, age, city, job)

由于命名关键字参数 city 具有默认值,调用时,可不传入 city 参数:

person('Jack', 24, job='Engineer')
Jack 24 Beijing Engineer

使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个 * 作为特殊分隔符。如果缺少 *,Python解释器将无法识别位置参数和命名关键字

def person(name, age, city, job):
    # 缺少 *,city和job被视为位置参数
    pass

参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。

def f1(a, b, c=0, *args, **kw):
    print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)

def f2(a, b, c=0, *, d, **kw):
    print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)

在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。

f1(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
f1(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
f1(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
f1(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
f2(1, 2, d=99, ext=None)
a = 1 b = 2 c = 0 d = 99 kw = {'ext': None}

通过一个 tupledict ,你也可以调用上述函数:

args = (1, 2, 3, 4)
kw = {'d': 99, 'x': '#'}
f1(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'}
args = (1, 2, 3)
kw = {'d': 88, 'x': '#'}
f2(*args, **kw)
a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}

所以,对于任意函数,都可以通过类似 func(*args, **kw) 的形式调用它,无论它的参数是如何定义的。

虽然可以组合多达5种参数,但不要同时使用太多的组合,否则函数接口的可理解性很差。

本节概念较多,下面来总结一下:

Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。

默认参数一定要用不可变对象,如果是可变对象,程序运行时会有逻辑错误!

要注意定义可变参数和关键字参数的语法:

*args 是可变参数,args 接收的是一个tuple

**kw 是关键字参数,kw 接收的是一个 dict

以及调用函数时如何传入可变参数和关键字参数的语法:

可变参数既可以直接传入:func(1, 2, 3),又可以先组装 listtuple,再通过*args 传入:func(*(1, 2, 3))

关键字参数既可以直接传入:func(a=1, b=2),又可以先组装 dict,再通过 **kw 传入:func(**{'a': 1, 'b': 2})

使用 *args**kw 是Python的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

命名的关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。

定义命名的关键字参数在没有可变参数的情况下不要忘了写分隔符*,否则定义的将是位置参数。

递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

我们来计算阶乘 n! = 1 x 2 x 3 x ... x n,用函数 fact(n) 表示,可以看出:

fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n

所以,fact(n) 可以表示为 n x fact(n-1),只有 n=1 时需要特殊处理。

于是,fact(n) 用递归的方式写出来就是:

def fact(n):
    if n==1:
        return 1
    return n * fact(n - 1)

调用:

fact(1)
1
fact(5)
120
fact(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000

如果我们计算fact(5),可以根据函数定义看到计算过程如下:

===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000):

fact(1000)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 4, in fact
  ...
  File "<stdin>", line 4, in fact
RuntimeError: maximum recursion depth exceeded in comparison

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

上面的 fact(n) 函数由于 return n * fact(n - 1) 引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

def fact(n):
    return fact_iter(n, 1)

def fact_iter(num, product):
    if num == 1:
        return product
    return fact_iter(num - 1, num * product)

可以看到,return fact_iter(num - 1, num * product) 仅返回递归函数本身,num - 1num * product 在函数调用前就会被计算,不影响函数调用。

fact(5)对应的fact_iter(5, 1)的调用如下:

===> fact_iter(5, 1)
===> fact_iter(4, 5)
===> fact_iter(3, 20)
===> fact_iter(2, 60)
===> fact_iter(1, 120)
===> 120

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的 fact(n) 函数改成尾递归方式,也会导致栈溢出。

本节完毕.

kaindy7633 avatar Mar 08 '21 03:03 kaindy7633