ldmm_graph_laplacian_pointcloud_denoise
ldmm_graph_laplacian_pointcloud_denoise copied to clipboard
3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model
trafficstars
3D Point Cloud Denoising Using Graph Laplacian Regularization of a Low Dimensional Manifold Model
by Jin Zeng, Gene Cheung, Michael Ng, Jiahao Pang, Cheng Yang
To appear on IEEE Trans. on Image Processing
Organization
|--- main_addnoise.m : main for adding noise to gt
|--- main_glr.m : main for GLR denoising
|--- pcdGLR.m : function for GLR denoising
|--- tool : tools for GLR
|--- metric : for computing MSE
|--- setParameter : for parameter setting
|--- 3d_data_set : sample point cloud model "anchor"
|--- gt : ground truth
|--- noise : noisy input with noise level 0.02, 0.03, 0.04
|--- anchor : denoising output for "anchor"
|--- README.md : intrustructions
Dependency
The code is tested with MATLAB R2016a.
Demo
- run main_addnoise.m to get noise corrupted point cloud in ./3d_data_set/noise
- run main_glr.m to get denoising results in ./anchor
Citation
If our work is useful for your research, please consider citing:
@inproceedings{zeng20183d,
title={3d point cloud denoising using graph laplacian regularization of a low dimensional manifold model},
author={Zeng, Jin and Cheung, Gene and Ng, Michael and Pang, Jiahao and Yang, Cheng},
booktitle={arXiv preprint arXiv:1803.07252},
year={2018}
}
Contact
Jin Zeng, [email protected]