permutation
permutation copied to clipboard
Permutations of finitely many positive integers
|repostatus| |ci-status| |coverage| |pyversions| |license|
.. |repostatus| image:: https://www.repostatus.org/badges/latest/active.svg :target: https://www.repostatus.org/#active :alt: Project Status: Active — The project has reached a stable, usable state and is being actively developed.
.. |ci-status| image:: https://github.com/jwodder/permutation/actions/workflows/test.yml/badge.svg :target: https://github.com/jwodder/permutation/actions/workflows/test.yml :alt: CI Status
.. |coverage| image:: https://codecov.io/gh/jwodder/permutation/branch/master/graph/badge.svg :target: https://codecov.io/gh/jwodder/permutation
.. |pyversions| image:: https://img.shields.io/pypi/pyversions/permutation.svg :target: https://pypi.org/project/permutation
.. |license| image:: https://img.shields.io/github/license/jwodder/permutation.svg :target: https://opensource.org/licenses/MIT :alt: MIT License
GitHub <https://github.com/jwodder/permutation>
_
| PyPI <https://pypi.org/project/permutation>
_
| Documentation <https://permutation.readthedocs.io>
_
| Issues <https://github.com/jwodder/permutation/issues>
_
| Changelog <https://github.com/jwodder/permutation/blob/master/CHANGELOG.md>
_
permutation
provides a Permutation
class for representing permutations <https://en.wikipedia.org/wiki/Permutation>
_ of finitely many positive
integers in Python. Supported operations & properties include inverses, (group
theoretic) order, parity, composition/multiplication, cycle decomposition,
cycle notation, word representation, Lehmer codes, and, of course, use as a
callable on integers.
Installation
permutation
requires Python 3.7 or higher. Just use pip <https://pip.pypa.io>
_ for Python 3 (You have pip, right?) to install::
python3 -m pip install permutation
Examples
from permutation import Permutation p = Permutation(2, 1, 4, 5, 3) p(1) 2 p(3) 4 p(42) 42 p.to_cycles() [(1, 2), (3, 4, 5)] print(p) (1 2)(3 4 5) print(p.inverse()) (1 2)(3 5 4) p.degree 5 p.order 6 p.is_even False p.lehmer(5) 27 q = Permutation.cycle(1,2,3) print(p * q) (2 4 5 3) print(q * p) (1 3 4 5) for p in Permutation.group(3): ... print(p) ... 1 (1 2) (2 3) (1 3 2) (1 2 3) (1 3)