math::Sphere::OptimalEnclosingSphere() breaks down for torus with sufficient detail
Torus that shows a problem:
- major axis = 0.5
- minor axis = 0.125
- major axis steps = 40
- minor axis steps = 32
This gives a bounding sphere that is too large to be optimal (center = (0.619, 0.0, 0.048), radius = 1.247):

Meanwhile, torus with less detail:
- major axis = 0.5
- minor axis = 0.125
- major axis steps = 30
- minor axis steps = 24
This gives the expected bounding sphere (center = (0,0,0), radius = 0.625)

Oh, very interesting!
Would you be able to dump the good and bad input vertices into a single .cpp test case file to showcase the error?
First suspect might be to play around with the epsilon value at
https://github.com/juj/MathGeoLib/blob/55053da5e3e55a83043af7324944407b174c3724/src/Geometry/Sphere.cpp#L325-L326
which was needed to improve the numerical stability of the algorithm.
Indeed, 1e-3f works, even with further more detail. Thanks!
I can try to make a repro case some time later.
Np.. another possibility to try if numerical stability is giving grief can be to duplicate the function into a version that uses doubles.
Repro:
#include <stdio.h>
#include <stdlib.h>
#include "../src/MathGeoLib.h"
#include "../src/Geometry/Sphere.h"
#include "../src/Math/myassert.h"
#include "TestRunner.h"
#include "TestData.h"
MATH_IGNORE_UNUSED_VARS_WARNING
MATH_BEGIN_NAMESPACE
std::vector<math::vec> GenerateTorus(
double major_radius,
double minor_radius,
int major_axis_steps,
int minor_axis_steps
)
{
std::vector<math::vec> points;
constexpr double pi = 3.14159265358979323846264338327950288;
const double R = major_radius;
const double r = minor_radius;
for (int major = 0; major < major_axis_steps; ++major)
{
const double rel_major = static_cast<double>(major) / static_cast<double>(major_axis_steps);
for (int minor = 0; minor < minor_axis_steps; ++minor)
{
const double rel_minor = static_cast<double>(minor) / static_cast<double>(minor_axis_steps);
const double theta = (pi * 2.0 * rel_major);
const double phi = (pi * 2.0 * rel_minor);
const double sin_theta = std::sin(theta);
const double cos_theta = std::cos(theta);
const double sin_phi = std::sin(phi);
const double cos_phi = std::cos(phi);
const double x = (R + r * cos_phi) * cos_theta;
const double z = (R + r * cos_phi) * sin_theta;
const double y = r * sin_phi;
const float fx = static_cast<float>(x);
const float fy = static_cast<float>(y);
const float fz = static_cast<float>(z);
points.push_back(math::vec{fx, fy, fz});
}
}
return points;
}
UNIQUE_TEST(BoundingSphere)
{
const auto points = GenerateTorus(0.5, 0.125, 40, 32);
const math::Sphere sphere = math::Sphere::OptimalEnclosingSphere(
points.data(),
static_cast<int>(points.size())
);
assert(sphere.r < (0.5 + 0.125 + 0.001));
}
MATH_END_NAMESPACE