piecewiseSEM
piecewiseSEM copied to clipboard
basisSet/dSep treats predictors differently when modeled as both linear and non-linear in SEM w/ GAMs
m1 <- gam(age ~ s(cover, k = 3) + s(firesev, k = 3), data = keeley)
m2 <- lm(rich ~ cover + firesev + distance, data = keeley)
m3 <- gam(distance ~ s(firesev, k = 3), data = keeley)
dSep(psem(m1, m2, m3))
Which gives
|====================================================================================| 100%
Independ.Claim Test.Type DF Crit.Value P.Value
1 distance ~ s(cover, k = 3) + ... anova 1.713613 1.9794257 0.24078373
2 distance ~ cover + ... coef 90.000000 1.3558566 0.17868465
3 distance ~ age + ... coef 90.000000 -1.8757426 0.06411653
4 rich ~ age + ... coef 85.000000 -0.5282477 0.59870392