deepfakes_faceswap
deepfakes_faceswap copied to clipboard
Can give the running demo
Can give the running demo
how to run decoder_A.h5 or encoder.h5
To run the demo, you have to setup your environment (If you check my pull request, you will find a Dockerfile with the tools needed).
Once this is done, you will have to run python ./script.py
from the code folder. This script will take all pics in data/trump
and apply a new face on it. The resulting images will be in a folder named output
Note that my Dockerfile still has issues, and you will have to modify scandir
and the mkdir
parameters
import cv2
import numpy
from pathlib import Path
from utils import get_image_paths
from model import autoencoder_A
from model import autoencoder_B
from model import encoder, decoder_A, decoder_B
encoder.load_weights("models/encoder.h5")
decoder_A.load_weights("models/decoder_A.h5")
decoder_B.load_weights("models/decoder_B.h5")
images_A = get_image_paths("data/trump")
images_B = get_image_paths("data/cage")
def convert_one_image(autoencoder, image):
assert image.shape == (256, 256, 3)
crop = slice(48, 208)
face = image[crop, crop]
face = cv2.resize(face, (64, 64))
face = numpy.expand_dims(face, 0)
new_face = autoencoder.predict(face / 255.0)[0]
new_face = numpy.clip(new_face * 255, 0, 255).astype(image.dtype)
new_face = cv2.resize(new_face, (160, 160))
new_image = image.copy()
new_image[crop, crop] = new_face
return new_image
output_dir = Path('output')
output_dir.mkdir(parents=True, exist_ok=True)
for fn in images_A:
image = cv2.imread(fn)
new_image = convert_one_image(autoencoder_B, image)
output_file = output_dir / Path(fn).name
cv2.imwrite(str(output_file), new_image)