ai-masterclass
ai-masterclass copied to clipboard
Repositorio de la Masterclass en Inteligencia Artificial
Masterclass en Inteligencia Artificial
Repositorio de la Masterclass en Inteligencia Artificial
Bienvenido
Bienvenido al repositorio de datos para el curso Masterclass en Inteligencia Artificial de Kirill Eremenko, Hadelin de Ponteves y Juan Gabriel Gomila. Aquí encontrarás los datasets y materiales complementarios del curso. Disfrútalos!
Sección 1. Introduction
Lecturas Adicionales
Sección 2. Redes Neuronales Artificiales (ANN)
Lecturas Adicionales
- Yann LeCun et al., 1998, Efficient BackProp
- By Xavier Glorot et al., 2011, Deep sparse rectifier neural networks
- CrossValidated, 2015, A list of cost functions used in neural networks, alongside applications
- Andrew Trask, 2015, A Neural Network in 13 lines of Python (Part 2 - Gradient Descent)
- Michael Nielsen, 2015, Neural Networks and Deep Learning
Sección 3. Redes Neuronales Convolucionales (CNN)
Lecturas Adicionales
- Yann LeCun et al., 1998, Gradient-Based Learning Applied to Document Recognition
- Jianxin Wu, 2017, Introduction to Convolutional Neural Networks
- C.-C. Jay Kuo, 2016, Understanding Convolutional Neural Networks with A Mathematical Model
- Kaiming He et al., 2015, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
- Dominik Scherer et al., 2010, Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition
- Adit Deshpande, 2016, The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)
- Rob DiPietro, 2016, A Friendly Introduction to Cross-Entropy Loss
- Peter Roelants, 2016, How to implement a neural network Intermezzo 2
Sección 4. AutoEncoders (AE)
Lecturas Adicionales
- Malte Skarupke, 2016, Neural Networks Are Impressively Good At Compression
- Francois Chollet, 2016, Building Autoencoders in Keras
- Chris McCormick, 2014, Deep Learning Tutorial - Sparse Autoencoder
- Eric Wilkinson, 2014, Deep Learning: Sparse Autoencoders
- Alireza Makhzani, 2014, k-Sparse Autoencoders
- Pascal Vincent, 2008, Extracting and Composing Robust Features with Denoising Autoencoders
- Salah Rifai, 2011, Contractive Auto-Encoders: Explicit Invariance During Feature Extraction
- Pascal Vincent, 2010, Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
- Geoffrey Hinton, 2006, Reducing the Dimensionality of Data with Neural Networks
Sección 5. AutoEncoders Variacionales (VAE)
Lecturas Adicionales
- Irhum Shafkat, 2018, Intuitively Understanding Variational Autoencoders
- Diederik P. Kingma and Max Welling, 2014, Auto-Encoding Variational Bayes
- Francois Chollet, 2016, Building Autoencoders in Keras
- Chris McCormick, 2014, Deep Learning Tutorial - Sparse Autoencoder
- Eric Wilkinson, 2014, Deep Learning: Sparse Autoencoders
- Alireza Makhzani, 2014, k-Sparse Autoencoders
- Pascal Vincent, 2008, Extracting and Composing Robust Features with Denoising Autoencoders
- Salah Rifai, 2011, Contractive Auto-Encoders: Explicit Invariance During Feature Extraction
- Pascal Vincent, 2010, Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
- Geoffrey Hinton, 2006, Reducing the Dimensionality of Data with Neural Networks
Sección 6. Implementación de CNN-VAE
Sección 7. Redes Neuronales Recurrentes (RNN)
Lecturas Adicionales
- Oscar Sharp & Benjamin, 2016, Sunspring
- Sepp (Josef) Hochreiter, 1991, Untersuchungen zu dynamischen neuronalen Netzen
- Yoshua Bengio, 1994, Learning Long-Term Dependencies with Gradient Descent is Difficult
- Razvan Pascanu, 2013, On the difficulty of training recurrent neural networks
- Sepp Hochreiter & Jurgen Schmidhuber, 1997, Long Short-Term Memory
- Christopher Olah, 2015, Understanding LSTM Networks
- Shi Yan, 2016, Understanding LSTM and its diagrams
- Andrej Karpathy, 2015, The Unreasonable Effectiveness of Recurrent Neural Networks
- Andrej Karpathy, 2015, Visualizing and Understanding Recurrent Networks
- Klaus Greff, 2015, LSTM: A Search Space Odyssey
- Xavier Glorot, 2011, Deep sparse rectifier neural networks
Sección 7. Red Neuronal de Densidad Mixta (MDN)
Sección 8. Implementación de MDN-RNN
Sección 9. Reinforcement Learning
Lecturas Adicionales
- Arthur Juliani, 2016, Simple Reinforcement Learning with Tensorflow (10 Parts)
- Richard Sutton et al., 1998, Reinforcement Learning I: Introduction
- Richard Bellman, 1954, [The Theory of Dynamic Programming](The Theory of Dynamic Programming)
- D. J. White, 1993, A Survey of Applications of Markov Decision Processes
- Martijn van Otterlo, 2009, Markov Decision Processes: Concepts and Algorithms
- Richard Sutton, 1988, Learning to Predict by the Methods of Temporal Differences