about TableSubgroupMultiGLM
TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data = lung, line = TRUE) Variable Count Percent Point Estimate Lower Upper sex=1 sex=2 P value P for interaction sex Overall 228 100 1.91 1.14 3.2 100 100 0.014 <NA> 1 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> 2 kk <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> 0.525 3 0 38 16.9 2.88 0.31 26.49 10 100 0.35 <NA> 4 1 187 83.1 1.84 1.08 3.14 100 100 0.026 <NA> 5 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> 6 kk1 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> 0.997 7 0 8 3.6 <NA> <NA> <NA> 0 100 <NA> <NA> 8 1 217 96.4 1.88 1.12 3.17 100 100 0.018 <NA> 警告信息: In coxph.fit(X, Y, istrat, offset, init, control, weights = weights, : Loglik converged before variable 1,2,3 ; coefficient may be infinite. TableSubgroupMultiGLM(status ~ sex, var_subgroups = c("kk", "kk1"), data = lung, family = "binomial") [1] "binomial"
Thank you very much for providing this package. However, when I use the TableSubgroupMultiGLM function, it seems that the returned values are incorrect. But when I use the TableSubgroupMultiCox function, it returns the correct values. What's wrong with it?
I run TableSubgroupMultiGLM(status ~ sex, var_subgroups = c("kk", "kk1"), data = lung, family = “binomial”). The below is the result.
Could you show what that wrong result is ?
Variable Count Percent OR Lower Upper P value P for interaction
sex2 Overall 228 100 3.01 1.65 5.47 <0.001 <NA>
1 kk <NA> <NA> <NA> <NA> <NA> NA 0.476
2 0 38 16.9 7 0.7 70.03 0.098 <NA>
3 1 187 83.1 2.94 1.55 5.57 0.001 <NA>
4 kk1 <NA> <NA> <NA> <NA> <NA> NA 0.984
5 0 8 3.6 314366015.19 0 Inf 0.997 <NA>
6 1 217 96.4 2.85 1.55 5.25 0.001 <NA>