Neural-Diffusion-Equation
Neural-Diffusion-Equation copied to clipboard
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21
Climate Modeling with Neural Diffusion Equation
Introduction
This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diffusion Equations". Paper is available on arxiv
Our Proposed NDE


Setup python environment for NDE
Install python environment
conda create -n nde python==3.8.0
conda install pytorch==1.7.0 cudatoolkit=11.0 -c pytorch
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html
pip install torch-geometric
pip install pyyaml
pip install tensorboardX
pip install torchdiffeq
or you can install conda environment via environment.yml
conda env create -f environment.yml
Activate environment
conda activate nde
How to run
One-step prediction for LA Dataset
bash run.sh
Experimental Setting (See more detail in cfg_files_ode/*.yaml)
- file
- LA.yaml, SD.yaml
- model_path
- False, True
- comment
- default: ''
- gpu
- default: 0