antinex-core icon indicating copy to clipboard operation
antinex-core copied to clipboard

Network exploit detection using highly accurate pre-trained deep neural networks with Celery + Keras + Tensorflow + Redis

AntiNex Core

Automating network exploit detection using highly accurate pre-trained deep neural networks.

As of 2018-03-12, the core can repeatedly predict attacks on Django, Flask, React + Redux, Vue, and Spring application servers by training using the pre-recorded AntiNex datasets_ with cross validation scores above ~99.8% with automated scaler normalization.

.. image:: https://travis-ci.org/jay-johnson/antinex-core.svg?branch=master :target: https://travis-ci.org/jay-johnson/antinex-core

Accuracy + Training + Cross Validation in a Jupyter Notebook

https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb

Using a Pre-Trained Deep Neural Network in a Jupyter Notebook

https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb

.. _AntiNex datasets: https://github.com/jay-johnson/antinex-datasets

Overview

The core is a Celery worker pool for processing training and prediction requests for deep neural networks to detect network exploits (Nex) using Keras and Tensorflow in near real-time. Internally each worker manages a buffer of pre-trained models identified by the label from the initial training request. Once trained, a model can be used for rapid prediction testing provided the same label name is used on the prediction request. Models can also be re-trained by using the training api with the same label. While the initial focus is on network exploits, the repository also includes mock stock data for demonstrating running a worker pool to quickly predict regression data (like stock prices) with many, pre-trained deep neural networks.

This repository is a standalone training and prediction worker pool that is decoupled from the AntiNex REST API:

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

AntiNex Stack Status

AntiNex Core Worker is part of the AntiNex stack:

.. list-table:: :header-rows: 1

    • Component
    • Build
    • Docs Link
    • Docs Build
    • REST API <https://github.com/jay-johnson/train-ai-with-django-swagger-jwt>__
    • .. image:: https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg?branch=master :alt: Travis Tests :target: https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
    • Docs <http://antinex.readthedocs.io/en/latest/>__
    • .. image:: https://readthedocs.org/projects/antinex/badge/?version=latest :alt: Read the Docs REST API Tests :target: https://readthedocs.org/projects/antinex/badge/?version=latest
    • Core Worker <https://github.com/jay-johnson/antinex-core>__
    • .. image:: https://travis-ci.org/jay-johnson/antinex-core.svg?branch=master :alt: Travis AntiNex Core Tests :target: https://travis-ci.org/jay-johnson/antinex-core.svg
    • Docs <http://antinex-core-worker.readthedocs.io/en/latest/>__
    • .. image:: https://readthedocs.org/projects/antinex-core-worker/badge/?version=latest :alt: Read the Docs AntiNex Core Tests :target: http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
    • Network Pipeline <https://github.com/jay-johnson/network-pipeline>__
    • .. image:: https://travis-ci.org/jay-johnson/network-pipeline.svg?branch=master :alt: Travis AntiNex Network Pipeline Tests :target: https://travis-ci.org/jay-johnson/network-pipeline.svg
    • Docs <http://antinex-network-pipeline.readthedocs.io/en/latest/>__
    • .. image:: https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest :alt: Read the Docs AntiNex Network Pipeline Tests :target: https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
    • AI Utils <https://github.com/jay-johnson/antinex-utils>__
    • .. image:: https://travis-ci.org/jay-johnson/antinex-utils.svg?branch=master :alt: Travis AntiNex AI Utils Tests :target: https://travis-ci.org/jay-johnson/antinex-utils.svg
    • Docs <http://antinex-ai-utilities.readthedocs.io/en/latest/>__
    • .. image:: https://readthedocs.org/projects/antinex-ai-utilities/badge/?version=latest :alt: Read the Docs AntiNex AI Utils Tests :target: http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
    • Client <https://github.com/jay-johnson/antinex-client>__
    • .. image:: https://travis-ci.org/jay-johnson/antinex-client.svg?branch=master :alt: Travis AntiNex Client Tests :target: https://travis-ci.org/jay-johnson/antinex-client.svg
    • Docs <http://antinex-client.readthedocs.io/en/latest/>__
    • .. image:: https://readthedocs.org/projects/antinex-client/badge/?version=latest :alt: Read the Docs AntiNex Client Tests :target: https://readthedocs.org/projects/antinex-client/badge/?version=latest

Install

pip install antinex-core

Optional for Generating Images

If you want to generate images please install python3-tk on Ubuntu.

::

sudo apt-get install python3-tk

Docker

Start the container for browsing with Jupyter:

::

# if you do not have docker compose installed, you can try installing it with:
# pip install docker-compose
cd docker
./start-stack.sh

Open Jupyter Notebook with Django Deep Neural Network Analysis

Default password is: admin

http://localhost:8888/notebooks/AntiNex-Protecting-Django.ipynb

View Notebook Presentation Slides

#. Use Alt + r inside the notebook

#. Use the non-vertical scolling url: http://localhost:8889/Slides-AntiNex-Protecting-Django.slides.html

#. Use the non-vertical scolling url: http://localhost:8890/Slides-AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.slides.html

Run

Please make sure redis is running and accessible before starting the core:

::

redis-cli 
127.0.0.1:6379>

With redis running and the antinex-core pip installed in the python 3 runtime, use this command to start the core:

::

./run-antinex-core.sh

Or with celery:

::

celery worker -A antinex_core.antinex_worker -l DEBUG

Publish a Predict Request

To train and predict with the new automated scaler-normalized dataset with a 99.8% prediction accuracy for detecting attacks using a wide, two-layer deep neural network with the AntiNex datasets_ run the following steps.

.. _AntiNex datasets: https://github.com/jay-johnson/antinex-datasets

Clone

Please make sure to clone the dataset repo to the pre-configured location:

::

mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/antinex-datasets

Django - Train and Predict

::

./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-django-antinex-simple.json

Flask - Train and Predict

::

./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-flask-antinex-simple.json

React and Redux - Train and Predict

::

./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-react-redux-antinex-simple.json

Vue - Train and Predict

::

./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-vue-antinex-simple.json

Spring - Train and Predict

::

./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-spring-antinex-simple.json

Accuracy and Prediction Report

After a few minutes the final report will be printed out like:

::

2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30178 - label_value=1.0 predicted=1 label=attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30179 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30180 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30181 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30182 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30183 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30184 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30185 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30186 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30187 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30188 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30189 - label_value=1.0 predicted=1 label=attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30190 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30191 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30192 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30193 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30194 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30195 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30196 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30197 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30198 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30199 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,947 - antinex-prc - INFO - Full-Django-AntiNex-Simple-Scaler-DNN made predictions=30200 found=30200 accuracy=99.84685430463577
2018-03-11 23:35:00,947 - antinex-prc - INFO - Full-Django-AntiNex-Simple-Scaler-DNN - saving model=full-django-antinex-simple-scaler-dnn

If you do not have the datasets cloned locally, you can use the included minimized dataset from the repo:

::

./antinex_core/scripts/publish_predict_request.py -f training/scaler-django-antinex-simple.json

Publish a Train Request

::

./antinex_core/scripts/publish_train_request.py

Publish a Regression Prediction Request

::

./antinex_core/scripts/publish_regression_predict.py

JSON API

The AntiNex core manages a pool of workers that are subscribed to process tasks found in two queues (webapp.train.requests and webapp.predict.requests). Tasks are defined as JSON dictionaries and must have the following structure:

::

{
    "label": "Django-AntiNex-Simple-Scaler-DNN",
    "dataset": "./tests/datasets/classification/cleaned_attack_scans.csv",
    "apply_scaler": true,
    "ml_type": "classification",
    "predict_feature": "label_value",
    "features_to_process": [
        "eth_type",
        "idx",
        "ip_ihl",
        "ip_len",
        "ip_tos",
        "ip_version",
        "tcp_dport",
        "tcp_fields_options.MSS",
        "tcp_fields_options.Timestamp",
        "tcp_fields_options.WScale",
        "tcp_seq",
        "tcp_sport"
    ],
    "ignore_features": [
    ],
    "sort_values": [
    ],
    "seed": 42,
    "test_size": 0.2,
    "batch_size": 32,
    "epochs": 10,
    "num_splits": 2,
    "loss": "binary_crossentropy",
    "optimizer": "adam",
    "metrics": [
        "accuracy"
    ],
    "histories": [
        "val_loss",
        "val_acc",
        "loss",
        "acc"
    ],
    "model_desc": {
        "layers": [
            {
                "num_neurons": 250,
                "init": "uniform",
                "activation": "relu"
            },
            {
                "num_neurons": 1,
                "init": "uniform",
                "activation": "sigmoid"
            }
        ]
    },
    "label_rules": {
        "labels": [
            "not_attack",
            "not_attack",
            "attack"
        ],
        "label_values": [
            -1,
            0,
            1
        ]
    },
    "version": 1
}

Regression prediction tasks are also supported, and here is an example from an included dataset with mock stock prices:

::

{
    "label": "Scaler-Close-Regression",
    "dataset": "./tests/datasets/regression/stock.csv",
    "apply_scaler": true,
    "ml_type": "regression",
    "predict_feature": "close",
    "features_to_process": [
        "high",
        "low",
        "open",
        "volume"
    ],
    "ignore_features": [
    ],
    "sort_values": [
    ],
    "seed": 7,
    "test_size": 0.2,
    "batch_size": 32,
    "epochs": 50,
    "num_splits": 2,
    "loss": "mse",
    "optimizer": "adam",
    "metrics": [
        "accuracy"
    ],
    "model_desc": {
        "layers": [
            {
                "activation": "relu",
                "init": "uniform",
                "num_neurons": 200
            },
            {
                "activation": null,
                "init": "uniform",
                "num_neurons": 1
            }
        ]
    }
}

Splunk Environment Variables

This repository uses the Spylunking <https://github.com/jay-johnson/spylunking>__ logger that supports publishing logs to Splunk over the authenticated HEC REST API. You can set these environment variables to publish to Splunk:

::

export SPLUNK_ADDRESS="<splunk address host:port>"
export SPLUNK_API_ADDRESS="<splunk api address host:port>"
export SPLUNK_USER="<splunk username for login>"
export SPLUNK_PASSWORD="<splunk password for login>"
export SPLUNK_TOKEN="<Optional - username and password will login or you can use a pre-existing splunk token>"
export SPLUNK_INDEX="<splunk index>"
export SPLUNK_QUEUE_SIZE="<num msgs allowed in queue - 0=infinite>"
export SPLUNK_RETRY_COUNT="<attempts per log to retry publishing>"
export SPLUNK_RETRY_BACKOFF="<cooldown in seconds per failed POST>"
export SPLUNK_SLEEP_INTERVAL="<sleep in seconds per batch>"
export SPLUNK_SOURCE="<splunk source>"
export SPLUNK_SOURCETYPE="<splunk sourcetype>"
export SPLUNK_TIMEOUT="<timeout in seconds>"
export SPLUNK_DEBUG="<1 enable debug|0 off - very verbose logging in the Splunk Publishers>"

Development

::

virtualenv -p python3 ~/.venvs/antinexcore && source ~/.venvs/antinexcore/bin/activate && pip install -e .

Testing

Run all

::

python setup.py test

Run a test case

::

python -m unittest tests.test_train.TestTrain.test_train_antinex_simple_success_retrain

Linting

flake8 .

pycodestyle .

License

Apache 2.0 - Please refer to the LICENSE_ for more details

.. _License: https://github.com/jay-johnson/antinex-core/blob/master/LICENSE