antinex-core
antinex-core copied to clipboard
Network exploit detection using highly accurate pre-trained deep neural networks with Celery + Keras + Tensorflow + Redis
AntiNex Core
Automating network exploit detection using highly accurate pre-trained deep neural networks.
As of 2018-03-12, the core can repeatedly predict attacks on Django, Flask, React + Redux, Vue, and Spring application servers by training using the pre-recorded AntiNex datasets
_ with cross validation scores above ~99.8% with automated scaler normalization.
.. image:: https://travis-ci.org/jay-johnson/antinex-core.svg?branch=master :target: https://travis-ci.org/jay-johnson/antinex-core
Accuracy + Training + Cross Validation in a Jupyter Notebook
https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Protecting-Django.ipynb
Using a Pre-Trained Deep Neural Network in a Jupyter Notebook
https://github.com/jay-johnson/antinex-core/blob/master/docker/notebooks/AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.ipynb
.. _AntiNex datasets: https://github.com/jay-johnson/antinex-datasets
Overview
The core is a Celery worker pool for processing training and prediction requests for deep neural networks to detect network exploits (Nex) using Keras and Tensorflow in near real-time. Internally each worker manages a buffer of pre-trained models identified by the label
from the initial training request. Once trained, a model can be used for rapid prediction testing provided the same label
name is used on the prediction request. Models can also be re-trained by using the training api with the same label
. While the initial focus is on network exploits, the repository also includes mock stock data for demonstrating running a worker pool to quickly predict regression data (like stock prices) with many, pre-trained deep neural networks.
This repository is a standalone training and prediction worker pool that is decoupled from the AntiNex REST API:
https://github.com/jay-johnson/train-ai-with-django-swagger-jwt
AntiNex Stack Status
AntiNex Core Worker is part of the AntiNex stack:
.. list-table:: :header-rows: 1
-
- Component
- Build
- Docs Link
- Docs Build
-
-
REST API <https://github.com/jay-johnson/train-ai-with-django-swagger-jwt>
__ - .. image:: https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg?branch=master :alt: Travis Tests :target: https://travis-ci.org/jay-johnson/train-ai-with-django-swagger-jwt.svg
-
Docs <http://antinex.readthedocs.io/en/latest/>
__ - .. image:: https://readthedocs.org/projects/antinex/badge/?version=latest :alt: Read the Docs REST API Tests :target: https://readthedocs.org/projects/antinex/badge/?version=latest
-
-
-
Core Worker <https://github.com/jay-johnson/antinex-core>
__ - .. image:: https://travis-ci.org/jay-johnson/antinex-core.svg?branch=master :alt: Travis AntiNex Core Tests :target: https://travis-ci.org/jay-johnson/antinex-core.svg
-
Docs <http://antinex-core-worker.readthedocs.io/en/latest/>
__ - .. image:: https://readthedocs.org/projects/antinex-core-worker/badge/?version=latest :alt: Read the Docs AntiNex Core Tests :target: http://antinex-core-worker.readthedocs.io/en/latest/?badge=latest
-
-
-
Network Pipeline <https://github.com/jay-johnson/network-pipeline>
__ - .. image:: https://travis-ci.org/jay-johnson/network-pipeline.svg?branch=master :alt: Travis AntiNex Network Pipeline Tests :target: https://travis-ci.org/jay-johnson/network-pipeline.svg
-
Docs <http://antinex-network-pipeline.readthedocs.io/en/latest/>
__ - .. image:: https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest :alt: Read the Docs AntiNex Network Pipeline Tests :target: https://readthedocs.org/projects/antinex-network-pipeline/badge/?version=latest
-
-
-
AI Utils <https://github.com/jay-johnson/antinex-utils>
__ - .. image:: https://travis-ci.org/jay-johnson/antinex-utils.svg?branch=master :alt: Travis AntiNex AI Utils Tests :target: https://travis-ci.org/jay-johnson/antinex-utils.svg
-
Docs <http://antinex-ai-utilities.readthedocs.io/en/latest/>
__ - .. image:: https://readthedocs.org/projects/antinex-ai-utilities/badge/?version=latest :alt: Read the Docs AntiNex AI Utils Tests :target: http://antinex-ai-utilities.readthedocs.io/en/latest/?badge=latest
-
-
-
Client <https://github.com/jay-johnson/antinex-client>
__ - .. image:: https://travis-ci.org/jay-johnson/antinex-client.svg?branch=master :alt: Travis AntiNex Client Tests :target: https://travis-ci.org/jay-johnson/antinex-client.svg
-
Docs <http://antinex-client.readthedocs.io/en/latest/>
__ - .. image:: https://readthedocs.org/projects/antinex-client/badge/?version=latest :alt: Read the Docs AntiNex Client Tests :target: https://readthedocs.org/projects/antinex-client/badge/?version=latest
-
Install
pip install antinex-core
Optional for Generating Images
If you want to generate images please install python3-tk
on Ubuntu.
::
sudo apt-get install python3-tk
Docker
Start the container for browsing with Jupyter:
::
# if you do not have docker compose installed, you can try installing it with:
# pip install docker-compose
cd docker
./start-stack.sh
Open Jupyter Notebook with Django Deep Neural Network Analysis
Default password is: admin
http://localhost:8888/notebooks/AntiNex-Protecting-Django.ipynb
View Notebook Presentation Slides
#. Use Alt + r
inside the notebook
#. Use the non-vertical scolling url: http://localhost:8889/Slides-AntiNex-Protecting-Django.slides.html
#. Use the non-vertical scolling url: http://localhost:8890/Slides-AntiNex-Using-Pre-Trained-Deep-Neural-Networks-For-Defense.slides.html
Run
Please make sure redis is running and accessible before starting the core:
::
redis-cli
127.0.0.1:6379>
With redis running and the antinex-core pip installed in the python 3 runtime, use this command to start the core:
::
./run-antinex-core.sh
Or with celery:
::
celery worker -A antinex_core.antinex_worker -l DEBUG
Publish a Predict Request
To train and predict with the new automated scaler-normalized dataset with a 99.8% prediction accuracy for detecting attacks using a wide, two-layer deep neural network with the AntiNex datasets
_ run the following steps.
.. _AntiNex datasets: https://github.com/jay-johnson/antinex-datasets
Clone
Please make sure to clone the dataset repo to the pre-configured location:
::
mkdir -p -m 777 /opt/antinex
git clone https://github.com/jay-johnson/antinex-datasets.git /opt/antinex/antinex-datasets
Django - Train and Predict
::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-django-antinex-simple.json
Flask - Train and Predict
::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-flask-antinex-simple.json
React and Redux - Train and Predict
::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-react-redux-antinex-simple.json
Vue - Train and Predict
::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-vue-antinex-simple.json
Spring - Train and Predict
::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-full-spring-antinex-simple.json
Accuracy and Prediction Report
After a few minutes the final report will be printed out like:
::
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30178 - label_value=1.0 predicted=1 label=attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30179 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30180 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30181 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,944 - antinex-prc - INFO - sample=30182 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30183 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30184 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30185 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30186 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30187 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30188 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30189 - label_value=1.0 predicted=1 label=attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30190 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,945 - antinex-prc - INFO - sample=30191 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30192 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30193 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30194 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30195 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30196 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30197 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30198 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,946 - antinex-prc - INFO - sample=30199 - label_value=-1.0 predicted=-1 label=not_attack
2018-03-11 23:35:00,947 - antinex-prc - INFO - Full-Django-AntiNex-Simple-Scaler-DNN made predictions=30200 found=30200 accuracy=99.84685430463577
2018-03-11 23:35:00,947 - antinex-prc - INFO - Full-Django-AntiNex-Simple-Scaler-DNN - saving model=full-django-antinex-simple-scaler-dnn
If you do not have the datasets cloned locally, you can use the included minimized dataset from the repo:
::
./antinex_core/scripts/publish_predict_request.py -f training/scaler-django-antinex-simple.json
Publish a Train Request
::
./antinex_core/scripts/publish_train_request.py
Publish a Regression Prediction Request
::
./antinex_core/scripts/publish_regression_predict.py
JSON API
The AntiNex core manages a pool of workers that are subscribed to process tasks found in two queues (webapp.train.requests
and webapp.predict.requests
). Tasks are defined as JSON dictionaries and must have the following structure:
::
{
"label": "Django-AntiNex-Simple-Scaler-DNN",
"dataset": "./tests/datasets/classification/cleaned_attack_scans.csv",
"apply_scaler": true,
"ml_type": "classification",
"predict_feature": "label_value",
"features_to_process": [
"eth_type",
"idx",
"ip_ihl",
"ip_len",
"ip_tos",
"ip_version",
"tcp_dport",
"tcp_fields_options.MSS",
"tcp_fields_options.Timestamp",
"tcp_fields_options.WScale",
"tcp_seq",
"tcp_sport"
],
"ignore_features": [
],
"sort_values": [
],
"seed": 42,
"test_size": 0.2,
"batch_size": 32,
"epochs": 10,
"num_splits": 2,
"loss": "binary_crossentropy",
"optimizer": "adam",
"metrics": [
"accuracy"
],
"histories": [
"val_loss",
"val_acc",
"loss",
"acc"
],
"model_desc": {
"layers": [
{
"num_neurons": 250,
"init": "uniform",
"activation": "relu"
},
{
"num_neurons": 1,
"init": "uniform",
"activation": "sigmoid"
}
]
},
"label_rules": {
"labels": [
"not_attack",
"not_attack",
"attack"
],
"label_values": [
-1,
0,
1
]
},
"version": 1
}
Regression prediction tasks are also supported, and here is an example from an included dataset with mock stock prices:
::
{
"label": "Scaler-Close-Regression",
"dataset": "./tests/datasets/regression/stock.csv",
"apply_scaler": true,
"ml_type": "regression",
"predict_feature": "close",
"features_to_process": [
"high",
"low",
"open",
"volume"
],
"ignore_features": [
],
"sort_values": [
],
"seed": 7,
"test_size": 0.2,
"batch_size": 32,
"epochs": 50,
"num_splits": 2,
"loss": "mse",
"optimizer": "adam",
"metrics": [
"accuracy"
],
"model_desc": {
"layers": [
{
"activation": "relu",
"init": "uniform",
"num_neurons": 200
},
{
"activation": null,
"init": "uniform",
"num_neurons": 1
}
]
}
}
Splunk Environment Variables
This repository uses the Spylunking <https://github.com/jay-johnson/spylunking>
__ logger that supports publishing logs to Splunk over the authenticated HEC REST API. You can set these environment variables to publish to Splunk:
::
export SPLUNK_ADDRESS="<splunk address host:port>"
export SPLUNK_API_ADDRESS="<splunk api address host:port>"
export SPLUNK_USER="<splunk username for login>"
export SPLUNK_PASSWORD="<splunk password for login>"
export SPLUNK_TOKEN="<Optional - username and password will login or you can use a pre-existing splunk token>"
export SPLUNK_INDEX="<splunk index>"
export SPLUNK_QUEUE_SIZE="<num msgs allowed in queue - 0=infinite>"
export SPLUNK_RETRY_COUNT="<attempts per log to retry publishing>"
export SPLUNK_RETRY_BACKOFF="<cooldown in seconds per failed POST>"
export SPLUNK_SLEEP_INTERVAL="<sleep in seconds per batch>"
export SPLUNK_SOURCE="<splunk source>"
export SPLUNK_SOURCETYPE="<splunk sourcetype>"
export SPLUNK_TIMEOUT="<timeout in seconds>"
export SPLUNK_DEBUG="<1 enable debug|0 off - very verbose logging in the Splunk Publishers>"
Development
::
virtualenv -p python3 ~/.venvs/antinexcore && source ~/.venvs/antinexcore/bin/activate && pip install -e .
Testing
Run all
::
python setup.py test
Run a test case
::
python -m unittest tests.test_train.TestTrain.test_train_antinex_simple_success_retrain
Linting
flake8 .
pycodestyle .
License
Apache 2.0 - Please refer to the LICENSE_ for more details
.. _License: https://github.com/jay-johnson/antinex-core/blob/master/LICENSE