opencv-course icon indicating copy to clipboard operation
opencv-course copied to clipboard

ValueError: Traceback (most recent call last)

Open kjayn opened this issue 2 years ago • 2 comments

# Create our model (returns a compiled model)
model = canaro.models.createSimpsonsModel(IMG_SIZE=IMG_SIZE, channels=channels, output_dim=len(characters), 
                                         loss='binary_crossentropy', decay=1e-7, learning_rate=0.001, momentum=0.9,
                                         nesterov=True)

ValueError: decay is deprecated in the new Keras optimizer, pleasecheck the docstring for valid arguments, or use the legacy optimizer, e.g., tf.keras.optimizers.legacy.SGD.

how to fix this?

kjayn avatar Dec 08 '22 18:12 kjayn

# Create our model (returns a compiled model)
model = canaro.models.createSimpsonsModel(IMG_SIZE=IMG_SIZE, channels=channels, output_dim=len(characters), 
                                         loss='binary_crossentropy', decay=1e-7, learning_rate=0.001, momentum=0.9,
                                         nesterov=True)

ValueError: decay is deprecated in the new Keras optimizer, pleasecheck the docstring for valid arguments, or use the legacy optimizer, e.g., tf.keras.optimizers.legacy.SGD.

how to fix this?

use this code instead: #this is the import statements you need to add import tensorflow as tf import keras from keras.models import Sequential, Model from keras.layers import Conv2D, Flatten, MaxPooling2D, Dense, Input, Reshape, Concatenate, GlobalAveragePooling2D, BatchNormalization, Dropout, Activation, GlobalMaxPooling2D from keras.utils import Sequence

#this is the functional code used to create the model

def create_ST_layer(input_shape = (64, 128, 3)): input_img = Input(shape=input_shape) model = Conv2D(48, kernel_size=(5, 5), input_shape = input_shape, strides = (1, 1), activation = "relu")(input_img) model = MaxPooling2D(pool_size=(2, 2), strides = (2, 2))(model) model = Conv2D(32, kernel_size=(5, 5), strides = (1, 1), activation = "relu")(model) model = MaxPooling2D(pool_size=(2, 2), strides = (2, 2))(model) model = Dense(50, activation = "relu")(model) model = Dense(6)(model) model = tf.keras.Model(inputs=input_img, outputs= model) return model

#to print the summary

model = create_ST_layer() model.summary()

Hope this helps!!!!

MAHENDRA9535 avatar Apr 09 '23 15:04 MAHENDRA9535

The best solution I found was to modify the simpsons.py file as stated in the answer here: https://stackoverflow.com/a/75951851/17870878.

MrIzzat avatar May 17 '24 12:05 MrIzzat