#========= [Train Configs] =========#
# - Num GPUs: 1
# - Batch size (per gpu): 1
# - LR: 0.000063
# - Num params: 89,994,513
# - AMP: True
#===================================#
🏋️> Epoch [000/210] | Loss 0.0014 | LR 0.000006 | Step: 0%| | 51/149813 [00:08<6:55:19, 6.01it/s]]
Traceback (most recent call last):
File "/home/ubuntu/mxy/workspace/ViTPose_pytorch/train.py", line 163, in
main()
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/click/core.py", line 1130, in call
return self.main(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/click/core.py", line 1055, in main
rv = self.invoke(ctx)
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/click/core.py", line 1404, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/click/core.py", line 760, in invoke
return __callback(*args, **kwargs)
File "/home/ubuntu/mxy/workspace/ViTPose_pytorch/train.py", line 150, in main
train_model(
File "/home/ubuntu/mxy/workspace/ViTPose_pytorch/utils/train_valid_fn.py", line 131, in train_model
outputs = model(images)
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/torch/nn/parallel/data_parallel.py", line 166, in forward
return self.module(*inputs[0], **kwargs[0])
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/ubuntu/mxy/workspace/ViTPose_pytorch/models/model.py", line 24, in forward
return self.keypoint_head(self.backbone(x))
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/ubuntu/mxy/workspace/ViTPose_pytorch/models/backbone/vit.py", line 399, in forward
x = self.forward_features(x)
File "/home/ubuntu/mxy/workspace/ViTPose_pytorch/models/backbone/vit.py", line 379, in forward_features
x, (Hp, Wp) = self.patch_embed(x)
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/ubuntu/mxy/workspace/ViTPose_pytorch/models/backbone/vit.py", line 226, in forward
x = self.proj(x)
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 457, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/home/ubuntu/anaconda3/envs/vitpose/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 453, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: Given groups=1, weight of size [768, 3, 16, 16], expected input[1, 1, 256, 192] to have 3 channels, but got 1 channels instead