neupy
neupy copied to clipboard
Input matrix not invertible error in Levenberg Marquardt algorithm using neupy.algorithms
Previously, I did not get any errors and the code ran properly. I even could see the results properly. Now after implementing everything, I want to save my results. For that I am running my code again and facing this new issue now. Please help me resolve this.
Please find the error below.
C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in less
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1333 try:
-> 1334 return fn(*args)
1335 except errors.OpError as e:
~\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata)
1318 return self._call_tf_sessionrun(
-> 1319 options, feed_dict, fetch_list, target_list, run_metadata)
1320
~\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\client\session.py in _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list, run_metadata)
1406 self._session, options, feed_dict, fetch_list, target_list,
-> 1407 run_metadata)
1408
InvalidArgumentError: Input matrix is not invertible.
[[{{node training-updates/MatrixSolve}}]]
During handling of the above exception, another exception occurred:
InvalidArgumentError Traceback (most recent call last)
<ipython-input-14-4e83562a364c> in <module>
----> 1 optimizer.train(xTrain, yTrain, xTest, yTest)
~\AppData\Roaming\Python\Python37\site-packages\neupy\algorithms\gd\base.py in train(self, X_train, y_train, X_test, y_test, *args, **kwargs)
299 X_train=X_train, y_train=y_train,
300 X_test=X_test, y_test=y_test,
--> 301 *args, **kwargs)
302
303 def one_training_update(self, X_train, y_train):
~\AppData\Roaming\Python\Python37\site-packages\neupy\algorithms\base.py in train(self, X_train, y_train, X_test, y_test, epochs, batch_size)
268 update_start_time = time.time()
269
--> 270 train_error = self.one_training_update(X_batch, y_batch)
271 self.n_updates_made += 1
272
~\AppData\Roaming\Python\Python37\site-packages\neupy\algorithms\gd\lev_marq.py in one_training_update(self, X_train, y_train)
173
174 return super(LevenbergMarquardt, self).one_training_update(
--> 175 X_train, y_train)
~\AppData\Roaming\Python\Python37\site-packages\neupy\algorithms\gd\base.py in one_training_update(self, X_train, y_train)
303 def one_training_update(self, X_train, y_train):
304 return self.functions.one_training_update(
--> 305 *as_tuple(X_train, y_train))
306
307 def get_params(self, deep=False, with_network=True):
~\AppData\Roaming\Python\Python37\site-packages\neupy\utils\tf_utils.py in wrapper(*input_values)
72 result, _ = session.run(
73 [outputs, tensorflow_updates],
---> 74 feed_dict=feed_dict,
75 )
76 return result
~\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
927 try:
928 result = self._run(None, fetches, feed_dict, options_ptr,
--> 929 run_metadata_ptr)
930 if run_metadata:
931 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1150 if final_fetches or final_targets or (handle and feed_dict_tensor):
1151 results = self._do_run(handle, final_targets, final_fetches,
-> 1152 feed_dict_tensor, options, run_metadata)
1153 else:
1154 results = []
~\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1326 if handle is None:
1327 return self._do_call(_run_fn, feeds, fetches, targets, options,
-> 1328 run_metadata)
1329 else:
1330 return self._do_call(_prun_fn, handle, feeds, fetches)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1346 pass
1347 message = error_interpolation.interpolate(message, self._graph)
-> 1348 raise type(e)(node_def, op, message)
1349
1350 def _extend_graph(self):
InvalidArgumentError: Input matrix is not invertible.
[[node training-updates/MatrixSolve (defined at C:\Users\mahati.bharadwaj\AppData\Roaming\Python\Python37\site-packages\neupy\algorithms\gd\lev_marq.py:159) ]]
Caused by op 'training-updates/MatrixSolve', defined at:
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
app.start()
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 505, in start
self.io_loop.start()
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\platform\asyncio.py", line 148, in start
self.asyncio_loop.run_forever()
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\asyncio\base_events.py", line 539, in run_forever
self._run_once()
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\asyncio\base_events.py", line 1775, in _run_once
handle._run()
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\asyncio\events.py", line 88, in _run
self._context.run(self._callback, *self._args)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\ioloop.py", line 690, in <lambda>
lambda f: self._run_callback(functools.partial(callback, future))
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\ioloop.py", line 743, in _run_callback
ret = callback()
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\gen.py", line 787, in inner
self.run()
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\gen.py", line 748, in run
yielded = self.gen.send(value)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 378, in dispatch_queue
yield self.process_one()
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\gen.py", line 225, in wrapper
runner = Runner(result, future, yielded)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\gen.py", line 714, in __init__
self.run()
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\gen.py", line 748, in run
yielded = self.gen.send(value)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 365, in process_one
yield gen.maybe_future(dispatch(*args))
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\gen.py", line 209, in wrapper
yielded = next(result)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 272, in dispatch_shell
yield gen.maybe_future(handler(stream, idents, msg))
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\gen.py", line 209, in wrapper
yielded = next(result)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 542, in execute_request
user_expressions, allow_stdin,
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tornado\gen.py", line 209, in wrapper
yielded = next(result)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 294, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 536, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2854, in run_cell
raw_cell, store_history, silent, shell_futures)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2880, in _run_cell
return runner(coro)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\IPython\core\async_helpers.py", line 68, in _pseudo_sync_runner
coro.send(None)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3057, in run_cell_async
interactivity=interactivity, compiler=compiler, result=result)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3248, in run_ast_nodes
if (await self.run_code(code, result, async_=asy)):
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3325, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-13-94821c1be936>", line 1, in <module>
optimizer = algorithms.LevenbergMarquardt(network, signals=on_epoch_end,)
File "C:\Users\mahati.bharadwaj\AppData\Roaming\Python\Python37\site-packages\neupy\algorithms\gd\base.py", line 149, in __init__
self.init_functions()
File "C:\Users\mahati.bharadwaj\AppData\Roaming\Python\Python37\site-packages\neupy\algorithms\gd\lev_marq.py", line 133, in init_functions
super(LevenbergMarquardt, self).init_functions()
File "C:\Users\mahati.bharadwaj\AppData\Roaming\Python\Python37\site-packages\neupy\algorithms\gd\base.py", line 176, in init_functions
training_updates = self.init_train_updates()
File "C:\Users\mahati.bharadwaj\AppData\Roaming\Python\Python37\site-packages\neupy\algorithms\gd\lev_marq.py", line 159, in init_train_updates
tf.matmul(J_T, tf.expand_dims(err_for_each_sample, 1))
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\ops\gen_linalg_ops.py", line 1422, in matrix_solve
"MatrixSolve", matrix=matrix, rhs=rhs, adjoint=adjoint, name=name)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper
op_def=op_def)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3300, in create_op
op_def=op_def)
File "C:\Users\mahati.bharadwaj\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1801, in __init__
self._traceback = tf_stack.extract_stack()
InvalidArgumentError (see above for traceback): Input matrix is not invertible.
[[node training-updates/MatrixSolve (defined at C:\Users\mahati.bharadwaj\AppData\Roaming\Python\Python37\site-packages\neupy\algorithms\gd\lev_marq.py:159) ]]
Hi, Do you have your code available somewhere? Also, can you tell me what are the versions of neupy and TensorFlow do you use?
Also, what is your mu_update_factor
value?
tensorflow version = 1.13.2 neupy version = 0.8.2 (not very sure where to check in anaconda environment) mu_update_factor is default value
my code
import numpy as np
np.random.seed(20)
from neupy import algorithms, layers
from neupy.exceptions import StopTraining
from neupy.layers import *
import pandas as pd
import time
from sklearn import preprocessing
data = pd.read_csv("data6k.csv")
train = data.iloc[1:600,1:20]
test = data.iloc[601:671,1:20]
xTrain = train.iloc[:,3:20]
yTrain = train.iloc[:,0]
xTest = test.iloc[:,3:20]
yTest = test.iloc[:,0]
network = join(Input(16), Relu(8), Linear(1))
def on_epoch_end(optimizer):
if optimizer.errors.valid[-1] < 0.001:
raise StopTraining("Training has been interrupted")
start_time = time.time()
optimizer = algorithms.LevenbergMarquardt(network, signals=on_epoch_end,)
optimizer.train(xTrain, yTrain, xTest, yTest)
yPred = optimizer.predict(xTest)
I am getting this error at optimizer.train
Please help me resolve this
please let me know
I think this might require a fix, in the meanwhile, can you try to reduce the mu_update_factor
value from 1.2 to maybe 1.1 or 1.05 and/or you can also try to increase mu
from 0.1 to maybe 0.2 or 0.5 (and maybe even all the way to 1)
It is strange how the same code worked two days back and is giving this issue now. It will be helpful if you could fix it asap and also explain the issue. Thanks
did you try to modify mu
and mu_update_factor
values? did it help to solve your problem?
I am again getting the same error at mu_update_factor=1.1, mu=0.2 This is working for mu_update_factor=1.1, mu=0.1 but predicted values are deviated a lot. Can you please tell me the ideal values for mu_update_factor and mu to avoid this error? My requirement is to get less model training time and deviation of predicted values from actual values should be as low as possible. I am unable to decide ideal mu_update_factor, mu and error threshold value (currently 0.001) as it is not working for many values. Please suggest ideal values as per my requirement. Please help.
Can you please tell me the ideal values for mu_update_factor and mu to avoid this error?
Inversion happens on the jacobian matrix and the mu
parameter is added to each diagonal element of this matrix. This trick helps to break linear dependence between rows/columns in the square matrix. But when mu
is way too large then the training might be less effective since mu introduces a bit of noise. The mu_update_factor
helps to increase or decrease mu
value based on the training performance. mu_update_factor=1
means that there will be no adjustments and large value will mean that small change in the error value can drastically increase or decrease mu
value. After many updates mu
can approach zero, so that's why. I thought that changing this parameters can help to resolve your problem.
Thanks. But different combinations of mu_update_factor, mu and error threshold value are giving this same error. How are these three related and how do we decide how to tune them? Is it still a bug or the user has to decide. Trial and error is a tedious method. Does this also depend on the size of the data set?
But different combinations of mu_update_factor, mu and error threshold value are giving this same error.
Sorry, maybe I misunderstood you, did you say that it worked for mu_update_factor=1.1, mu=0.1
?
This is working for mu_update_factor=1.1, mu=0.1 but predicted values are deviated a lot.
How are these three related and how do we decide how to tune them?
It's important for you to understand algorithm before using it. Please refer to this book in order to learn more about it: https://hagan.okstate.edu/NNDesign.pdf (see Section 12).
Is it still a bug or the user has to decide.
The mu
parameter has to deal with this problem, but for some reason it doesn't. I might need to put a threshold on the minimum mu
value in order to ensure that matrix will remain invertible (but I'm not 100% whether that's the problem that you're experiencing).
Would it be possible for you to set verbose=True
and share outputs that you're observing in the terminal
optimizer = algorithms.LevenbergMarquardt(network, signals=on_epoch_end, verbose=True)
Thanks for the information. I observed another strange thing with the parameters. The same combination of mu, mu_update_factor and error threshold always doesn't give the result. Sometimes it gives this error and sometimes it works. I think this needs to be fixed.
same error. Even after changing mu and mu_update_factor. Main information
[ALGORITHM] LevenbergMarquardt
[OPTION] loss = mse [OPTION] mu = 0.1 [OPTION] mu_update_factor = 1.1 [OPTION] show_epoch = 1 [OPTION] shuffle_data = False [OPTION] signals = None [OPTION] target = Tensor("placeholder/target/linear-1:0", shape=(?, 1), dtype=float32) [OPTION] verbose = True
[TENSORFLOW] Initializing Tensorflow variables and functions. WARNING:tensorflow:From c:\python37\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. [TENSORFLOW] Initialization finished successfully. It took 0.24 seconds
@rdx10001 do you get the same error during the first training iteration or after some number of epochs?