DeepFaceLab icon indicating copy to clipboard operation
DeepFaceLab copied to clipboard

Dose rtx3080 work well on DFL?

Open megascomnenus opened this issue 5 years ago • 452 comments

Hf8PxDyh 5XRRFIdh RN1Gj7bh

My 3080 dosent't work on dfl.

It works just by using cpu.

I habe the lastest nvidia driver installed and DFL updated in August but it couldn't work.

It works good elsewhere. Ex) counter strike, valorant, lol, 3dmark, video

Even CUDA driver couldn't help me either.

megascomnenus avatar Sep 22 '20 02:09 megascomnenus

can you post screenshot of nvidia-smi

test1230-lab avatar Sep 22 '20 17:09 test1230-lab

can you post screenshot of nvidia-smi

1 Idle state

2 Ethereum mining state

megascomnenus avatar Sep 22 '20 18:09 megascomnenus

seems like RTX 3k breaks backward compatibility with CUDA 9.2

iperov avatar Sep 23 '20 10:09 iperov

Could dfl not run on a newer version of cuda?

test1230-lab avatar Sep 23 '20 18:09 test1230-lab

You need Cuda11+TensorFlow1.15.2 nv version。 I successfully run DFL on A100, 3080 is the same architecture

dream80 avatar Sep 24 '20 00:09 dream80

Ok so the "binary" must be updated to replace the old included cuda version

test1230-lab avatar Sep 24 '20 00:09 test1230-lab

You need Cuda11+TensorFlow1.15.2 nv version。 I successfully run DFL on A100, 3080 is the same architecture

cuda anaconda

Thank you for answer.

CUDA 11 + TensorFlow 2.3.0 CUDA 11 + TensorFlow 1.15.2 CUDA 10.1 + Tensorflow 2.3.0

I installed it like this, but it didn't work. I don't know which one is the problem.

If other 3080 users test this, we'll see what's wrong.

megascomnenus avatar Sep 24 '20 03:09 megascomnenus

did you run with the bat files? also dfl is not tf 2.x

test1230-lab avatar Sep 24 '20 14:09 test1230-lab

try this build https://mega.nz/file/WgVX3QZb#mM-4gY87qWHrLON6SbJfeBUmRmNZlhaHOOJWWt-aV3k

iperov avatar Sep 24 '20 15:09 iperov

try this build https://mega.nz/file/WgVX3QZb#mM-4gY87qWHrLON6SbJfeBUmRmNZlhaHOOJWWt-aV3k

cuda tensor

The picture above is the version currently installed. CUDA 11, Tensorflow 1.15.2

I downloaded the link you gave and tried, but it doesn't work.

I uploaded a video trying to extract a face. https://youtu.be/8HvWs9ZaDpQ

megascomnenus avatar Sep 24 '20 17:09 megascomnenus

try this https://mega.nz/file/WskhTaqJ#nqPU7cnfV3QZnBt3PgQSZ7F1lV_gCyK6F5i0ArItRuA

iperov avatar Sep 24 '20 19:09 iperov

clipboard Special Tensorflow 1.15.2 version is required, compiled by NVIDIA ,This is very important . I use Ubuntu 18.04. If you use DFL window build , you need to replace TF version and cuda cudnn DLL

dream80 avatar Sep 25 '20 00:09 dream80

clipboard Special Tensorflow 1.15.2 version is required, compiled by NVIDIA ,This is very important . I use Ubuntu 18.04. If you use DFL window build , you need to replace TF version and cuda cudnn DLL

From what I look for, there seems to be no Windows version of'tensorflow 1.15.2+nv'.

https://developer.nvidia.com/embedded/downloads#?search=tensorflow I found it on this link, but couldn't find the windows version.

Instead, I installed CUDA 10, cuDNN 7.6.5, TensorFlow 1.15.2.

gpu recognition in TensorFlow comes out as follows.

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 17:00:18) [MSC v.1900 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information.

import tensorflow as tf 2020-09-25 06:20:26.405668: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll tf.version '1.15.2' from tensorflow.python.client import device_lib device_lib.list_local_devices() 2020-09-25 06:20:33.028850: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 2020-09-25 06:20:33.036937: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll 2020-09-25 06:20:33.067991: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1639] Found device 0 with properties: name: GeForce RTX 3080 major: 8 minor: 6 memoryClockRate(GHz): 1.74 pciBusID: 0000:26:00.0 2020-09-25 06:20:33.075671: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll 2020-09-25 06:20:33.083759: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll 2020-09-25 06:20:33.092244: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_100.dll 2020-09-25 06:20:33.098834: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_100.dll 2020-09-25 06:20:33.107826: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_100.dll 2020-09-25 06:20:33.115569: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_100.dll 2020-09-25 06:20:33.127998: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll 2020-09-25 06:20:33.134070: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1767] Adding visible gpu devices: 0 2020-09-25 06:20:34.029890: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1180] Device interconnect StreamExecutor with strength 1 edge matrix: 2020-09-25 06:20:34.035905: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1186] 0 2020-09-25 06:20:34.040880: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1199] 0: N 2020-09-25 06:20:34.044904: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1325] Created TensorFlow device (/device:GPU:0 with 7844 MB memory) -> physical GPU (device: 0, name: GeForce RTX 3080, pci bus id: 0000:26:00.0, compute capability: 8.6) [name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 13241750559676449420 , name: "/device:GPU:0" device_type: "GPU" memory_limit: 8225635697 locality { bus_id: 1 links { } } incarnation: 13019861911155521269 physical_device_desc: "device: 0, name: GeForce RTX 3080, pci bus id: 0000:26:00.0, compute capability: 8.6" ]

try this https://mega.nz/file/WskhTaqJ#nqPU7cnfV3QZnBt3PgQSZ7F1lV_gCyK6F5i0ArItRuA

Still doesn't work.

megascomnenus avatar Sep 25 '20 05:09 megascomnenus

last build is tf 15.2 cuda 10 cudnn 7.6.0 version is the same as used in tf 15.2 compilation

iperov avatar Sep 25 '20 05:09 iperov

last build is tf 15.2 cuda 10 cudnn 7.6.0 version is the same as used in tf 15.2 compilation

then CUDA 10 (not 10.1) TensorFlow 1.15.2 (not nv version) cuDNN 7.6.0 Is it correct to install?

I changed to cuDNN 7.6.0, but it doesn't work.

megascomnenus avatar Sep 25 '20 06:09 megascomnenus

you don't need to install anything when using DFL builds.

iperov avatar Sep 25 '20 06:09 iperov

you don't need to install anything when using DFL builds.

if so, can I stop trying and wait for the DFL to be updated?

megascomnenus avatar Sep 25 '20 07:09 megascomnenus

currently there is no solution how to run 3080 with DFL. Because tensorflow doesn't support it.

iperov avatar Sep 25 '20 07:09 iperov

currently there is no solution how to run 3080 with DFL. Because tensorflow doesn't support it.

Then I have to wait until TensorFlow supports DFL to operate RTX 3080. Thanks for your answer.

megascomnenus avatar Sep 25 '20 07:09 megascomnenus

how about the version of tf @dream80 mentioned?

test1230-lab avatar Sep 25 '20 11:09 test1230-lab

how about the version of tf @dream80 mentioned?

That version, as far as I know, is for Linux only.

I can't use it because I use Windows.

megascomnenus avatar Sep 25 '20 15:09 megascomnenus

您需要Cuda11 + TensorFlow1.15.2 nv版本。我在A100上成功运行DFL,3080是相同的架构

Can you share your DFL? Thank you

yuanshiyuanyi avatar Sep 27 '20 04:09 yuanshiyuanyi

I found that the RTX 3000 only works properly with CUDA 11.1, which was updated on Sep, 23.

But, as far as I know, even the latest version of TensorFlow, version 2.3.0, supports only CUDA 10.

I hope tensorflow 2.4.0 is newly released and DFL supports this.

https://news.developer.nvidia.com/cuda-11-1-introduces-support-rtx-30-series/

megascomnenus avatar Sep 27 '20 04:09 megascomnenus

I'm not sure, but there are some sayings that TensorFlow 1.15 can support cuda 11.1. https://news.developer.nvidia.com/developer-blog-accelerating-tensorflow-on-nvidia-a100-gpus/

He succeeded in running Tensorflow 1.15 with the RTX 3000. https://www.pugetsystems.com/labs/hpc/RTX3090-TensorFlow-NAMD-and-HPCG-Performance-on-Linux-Preliminary-1902/

megascomnenus avatar Sep 27 '20 13:09 megascomnenus

@megascomnenus thx, I will test tf 1.15 with cuda 11.1 right now with rtx 2K

iperov avatar Sep 27 '20 13:09 iperov

works

Now somebody test with RTX 3k

https://mega.nz/file/Pgs0jKrI#ptg3INE95knjWVC4XDmAp7-VlWO6l2gE2xoQfhtftIM

iperov avatar Sep 27 '20 14:09 iperov

works

Now somebody test with RTX 3k

https://mega.nz/file/Pgs0jKrI#ptg3INE95knjWVC4XDmAp7-VlWO6l2gE2xoQfhtftIM

I am testing now. It's slow, but it works.

https://youtu.be/eb-ZANifM_4

megascomnenus avatar Sep 27 '20 15:09 megascomnenus

test saehd iteration time

iperov avatar Sep 27 '20 15:09 iperov

Running trainer.

[new] No saved models found. Enter a name of a new model : new

Model first run.

Choose one or several GPU idxs (separated by comma).

[CPU] : CPU [0] : GeForce RTX 3080

[0] Which GPU indexes to choose? : 0

[0] Autobackup every N hour ( 0..24 ?:help ) : 0 [n] Write preview history ( y/n ?:help ) : n [0] Target iteration : 0 [y] Flip faces randomly ( y/n ?:help ) : y [8] Batch_size ( ?:help ) : 8 [128] Resolution ( 64-640 ?:help ) : 128 [f] Face type ( h/mf/f/wf/head ?:help ) : f [df] AE architecture ( ?:help ) : df [256] AutoEncoder dimensions ( 32-1024 ?:help ) : 256 [64] Encoder dimensions ( 16-256 ?:help ) : 64 [64] Decoder dimensions ( 16-256 ?:help ) : 64 [22] Decoder mask dimensions ( 16-256 ?:help ) : 22 [n] Eyes priority ( y/n ?:help ) : n [n] Uniform yaw distribution of samples ( y/n ?:help ) : n [y] Place models and optimizer on GPU ( y/n ?:help ) : y [n] Use learning rate dropout ( n/y/cpu ?:help ) : n [y] Enable random warp of samples ( y/n ?:help ) : y [0.0] GAN power ( 0.0 .. 10.0 ?:help ) : 0.0 [0.0] 'True face' power. ( 0.0000 .. 1.0 ?:help ) : 0.0 [0.0] Face style power ( 0.0..100.0 ?:help ) : 0.0 [0.0] Background style power ( 0.0..100.0 ?:help ) : 0.0 [none] Color transfer for src faceset ( none/rct/lct/mkl/idt/sot ?:help ) : none [n] Enable gradient clipping ( y/n ?:help ) : n [n] Enable pretraining mode ( y/n ?:help ) : n Initializing models: 0%| | 0/5 [00:00<?, ?it/s] Error: Cannot assign a device for operation encoder/down1/downs_0/conv1/weight/Initializer/cai: Could not satisfy explicit device specification '' because the node node encoder/down1/downs_0/conv1/weight/Initializer/cai (defined at C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py:1748) placed on device Device assignments active during op 'encoder/down1/downs_0/conv1/weight/Initializer/cai' creation: with tf.device(None): <C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py:1816> with tf.device(/GPU:0): <C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py:233> was colocated with a group of nodes that required incompatible device '/device:GPU:0'. All available devices [/job:localhost/replica:0/task:0/device:CPU:0]. Colocation Debug Info: Colocation group had the following types and supported devices: Root Member(assigned_device_name_index_=-1 requested_device_name_='/device:GPU:0' assigned_device_name_='' resource_device_name_='/device:GPU:0' supported_device_types_=[CPU] possible_devices_=[] Assign: CPU Const: CPU Fill: CPU VariableV2: CPU Identity: CPU

Colocation members, user-requested devices, and framework assigned devices, if any: encoder/down1/downs_0/conv1/weight/Initializer/cai/shape_as_tensor (Const) encoder/down1/downs_0/conv1/weight/Initializer/cai/Const (Const) encoder/down1/downs_0/conv1/weight/Initializer/cai (Fill) encoder/down1/downs_0/conv1/weight (VariableV2) /device:GPU:0 encoder/down1/downs_0/conv1/weight/Assign (Assign) /device:GPU:0 encoder/down1/downs_0/conv1/weight/read (Identity) /device:GPU:0 Assign_1 (Assign) /device:GPU:0

     [[node encoder/down1/downs_0/conv1/weight/Initializer/_cai_ (defined at C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py:1748) ]]Additional information about colocations:No node-device colocations were active during op 'encoder/down1/downs_0/conv1/weight/Initializer/_cai_' creation.

Device assignments active during op 'encoder/down1/downs_0/conv1/weight/Initializer/cai' creation: with tf.device(None): <C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py:1816> with tf.device(/GPU:0): <C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py:233>

Original stack trace for 'encoder/down1/downs_0/conv1/weight/Initializer/cai': File "threading.py", line 884, in _bootstrap File "threading.py", line 916, in _bootstrap_inner File "threading.py", line 864, in run File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\mainscripts\Trainer.py", line 57, in trainerThread debug=debug, File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\ModelBase.py", line 189, in init self.on_initialize() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 236, in on_initialize encoder_out_ch = self.encoder.compute_output_channels ( (nn.floatx, bgr_shape)) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 147, in compute_output_channels shape = self.compute_output_shape(shapes) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 121, in compute_output_shape self.build() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 65, in build self._build_sub(v[name],name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 35, in _build_sub layer.build() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 65, in build self._build_sub(v[name],name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 20, in _build_sub self.build_sub(sublayer, f"{name}{i}") File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 35, in _build_sub layer.build() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 65, in build self._build_sub(v[name],name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 33, in _build_sub layer.build_weights() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 76, in build_weights self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 1500, in get_variable aggregation=aggregation) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 1243, in get_variable aggregation=aggregation) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 567, in get_variable aggregation=aggregation) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 519, in _true_getter aggregation=aggregation) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 933, in _get_single_variable aggregation=aggregation) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 258, in call return cls._variable_v1_call(*args, **kwargs) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 219, in _variable_v1_call shape=shape) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 197, in previous_getter = lambda **kwargs: default_variable_creator(None, **kwargs) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 2519, in default_variable_creator shape=shape) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 262, in call return super(VariableMetaclass, cls).call(*args, **kwargs) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 1688, in init shape=shape) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 1818, in init_from_args initial_value(), name="initial_value", dtype=dtype) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 905, in partition_info=partition_info) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\initializers_init.py", line 13, in call return tf.zeros( shape, dtype=dtype, name="cai") File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\array_ops.py", line 2350, in zeros output = fill(shape, constant(zero, dtype=dtype), name=name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\array_ops.py", line 171, in fill result = gen_array_ops.fill(dims, value, name=name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gen_array_ops.py", line 3602, in fill "Fill", dims=dims, value=value, name=name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\op_def_library.py", line 794, in _apply_op_helper op_def=op_def) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\util\deprecation.py", line 507, in new_func return func(*args, **kwargs) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 3357, in create_op attrs, op_def, compute_device) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 3426, in _create_op_internal op_def=op_def) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1748, in init self._traceback = tf_stack.extract_stack()

Traceback (most recent call last): File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1365, in do_call return fn(*args) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1348, in run_fn self.extend_graph() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1388, in extend_graph tf_session.ExtendSession(self.session) tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation encoder/down1/downs_0/conv1/weight/Initializer/cai: Could not satisfy explicit device specification '' because the node {{colocation_node encoder/down1/downs_0/conv1/weight/Initializer/cai}} was colocated with a group of nodes that required incompatible device '/device:GPU:0'. All available devices [/job:localhost/replica:0/task:0/device:CPU:0]. Colocation Debug Info: Colocation group had the following types and supported devices: Root Member(assigned_device_name_index=-1 requested_device_name='/device:GPU:0' assigned_device_name='' resource_device_name='/device:GPU:0' supported_device_types=[CPU] possible_devices_=[] Assign: CPU Const: CPU Fill: CPU VariableV2: CPU Identity: CPU

Colocation members, user-requested devices, and framework assigned devices, if any: encoder/down1/downs_0/conv1/weight/Initializer/cai/shape_as_tensor (Const) encoder/down1/downs_0/conv1/weight/Initializer/cai/Const (Const) encoder/down1/downs_0/conv1/weight/Initializer/cai (Fill) encoder/down1/downs_0/conv1/weight (VariableV2) /device:GPU:0 encoder/down1/downs_0/conv1/weight/Assign (Assign) /device:GPU:0 encoder/down1/downs_0/conv1/weight/read (Identity) /device:GPU:0 Assign_1 (Assign) /device:GPU:0

     [[{{node encoder/down1/downs_0/conv1/weight/Initializer/_cai_}}]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\mainscripts\Trainer.py", line 57, in trainerThread debug=debug, File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\ModelBase.py", line 189, in init self.on_initialize() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 571, in on_initialize model.init_weights() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\layers\Saveable.py", line 101, in init_weights nn.init_weights(self.get_weights()) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\ops_init_.py", line 48, in init_weights nn.tf_sess.run (ops) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 956, in run run_metadata_ptr) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1180, in run feed_dict_tensor, options, run_metadata) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1359, in do_run run_metadata) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1384, in do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation encoder/down1/downs_0/conv1/weight/Initializer/cai: Could not satisfy explicit device specification '' because the node node encoder/down1/downs_0/conv1/weight/Initializer/cai (defined at C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py:1748) placed on device Device assignments active during op 'encoder/down1/downs_0/conv1/weight/Initializer/cai' creation: with tf.device(None): <C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py:1816> with tf.device(/GPU:0): <C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py:233> was colocated with a group of nodes that required incompatible device '/device:GPU:0'. All available devices [/job:localhost/replica:0/task:0/device:CPU:0]. Colocation Debug Info: Colocation group had the following types and supported devices: Root Member(assigned_device_name_index=-1 requested_device_name='/device:GPU:0' assigned_device_name='' resource_device_name_='/device:GPU:0' supported_device_types_=[CPU] possible_devices_=[] Assign: CPU Const: CPU Fill: CPU VariableV2: CPU Identity: CPU

Colocation members, user-requested devices, and framework assigned devices, if any: encoder/down1/downs_0/conv1/weight/Initializer/cai/shape_as_tensor (Const) encoder/down1/downs_0/conv1/weight/Initializer/cai/Const (Const) encoder/down1/downs_0/conv1/weight/Initializer/cai (Fill) encoder/down1/downs_0/conv1/weight (VariableV2) /device:GPU:0 encoder/down1/downs_0/conv1/weight/Assign (Assign) /device:GPU:0 encoder/down1/downs_0/conv1/weight/read (Identity) /device:GPU:0 Assign_1 (Assign) /device:GPU:0

     [[node encoder/down1/downs_0/conv1/weight/Initializer/_cai_ (defined at C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA\_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py:1748) ]]Additional information about colocations:No node-device colocations were active during op 'encoder/down1/downs_0/conv1/weight/Initializer/_cai_' creation.

Device assignments active during op 'encoder/down1/downs_0/conv1/weight/Initializer/cai' creation: with tf.device(None): <C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py:1816> with tf.device(/GPU:0): <C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py:233>

Original stack trace for 'encoder/down1/downs_0/conv1/weight/Initializer/cai': File "threading.py", line 884, in _bootstrap File "threading.py", line 916, in _bootstrap_inner File "threading.py", line 864, in run File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\mainscripts\Trainer.py", line 57, in trainerThread debug=debug, File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\ModelBase.py", line 189, in init self.on_initialize() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 236, in on_initialize encoder_out_ch = self.encoder.compute_output_channels ( (nn.floatx, bgr_shape)) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 147, in compute_output_channels shape = self.compute_output_shape(shapes) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 121, in compute_output_shape self.build() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 65, in build self._build_sub(v[name],name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 35, in _build_sub layer.build() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 65, in build self._build_sub(v[name],name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 20, in _build_sub self.build_sub(sublayer, f"{name}{i}") File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 35, in _build_sub layer.build() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 65, in build self._build_sub(v[name],name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 33, in _build_sub layer.build_weights() File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\layers\Conv2D.py", line 76, in build_weights self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 1500, in get_variable aggregation=aggregation) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 1243, in get_variable aggregation=aggregation) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 567, in get_variable aggregation=aggregation) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 519, in _true_getter aggregation=aggregation) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 933, in _get_single_variable aggregation=aggregation) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 258, in call return cls._variable_v1_call(*args, **kwargs) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 219, in _variable_v1_call shape=shape) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 197, in previous_getter = lambda **kwargs: default_variable_creator(None, **kwargs) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 2519, in default_variable_creator shape=shape) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 262, in call return super(VariableMetaclass, cls).call(*args, **kwargs) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 1688, in init shape=shape) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variables.py", line 1818, in init_from_args initial_value(), name="initial_value", dtype=dtype) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\variable_scope.py", line 905, in partition_info=partition_info) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\initializers_init.py", line 13, in call return tf.zeros( shape, dtype=dtype, name="cai") File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\array_ops.py", line 2350, in zeros output = fill(shape, constant(zero, dtype=dtype), name=name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\array_ops.py", line 171, in fill result = gen_array_ops.fill(dims, value, name=name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gen_array_ops.py", line 3602, in fill "Fill", dims=dims, value=value, name=name) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\op_def_library.py", line 794, in _apply_op_helper op_def=op_def) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\util\deprecation.py", line 507, in new_func return func(*args, **kwargs) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 3357, in create_op attrs, op_def, compute_device) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 3426, in _create_op_internal op_def=op_def) File "C:\Users\user\Documents\MEGAsync Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1748, in init self._traceback = tf_stack.extract_stack()

megascomnenus avatar Sep 27 '20 16:09 megascomnenus

I tried on my RTX 3090

Running trainer.

[new] No saved models found. Enter a name of a new model : new

Model first run.

Choose one or several GPU idxs (separated by comma).

[CPU] : CPU [0] : GeForce RTX 3090

[0] Which GPU indexes to choose? : 0

Caching GPU kernels... [0] Autobackup every N hour ( 0..24 ?:help ) : 0 [n] Write preview history ( y/n ?:help ) : n [0] Target iteration : 0 [y] Flip faces randomly ( y/n ?:help ) : y [8] Batch_size ( ?:help ) : 8 [128] Resolution ( 64-640 ?:help ) : 128 [f] Face type ( h/mf/f/wf/head ?:help ) : f [df] AE architecture ( ?:help ) : df [256] AutoEncoder dimensions ( 32-1024 ?:help ) : 256 [64] Encoder dimensions ( 16-256 ?:help ) : 64 [64] Decoder dimensions ( 16-256 ?:help ) : 64 [22] Decoder mask dimensions ( 16-256 ?:help ) : 22 [n] Eyes priority ( y/n ?:help ) : n [n] Uniform yaw distribution of samples ( y/n ?:help ) : n [y] Place models and optimizer on GPU ( y/n ?:help ) : y [n] Use learning rate dropout ( n/y/cpu ?:help ) : n [y] Enable random warp of samples ( y/n ?:help ) : y [0.0] GAN power ( 0.0 .. 10.0 ?:help ) : 0.0 [0.0] 'True face' power. ( 0.0000 .. 1.0 ?:help ) : 0.0 [0.0] Face style power ( 0.0..100.0 ?:help ) : 0.0 [0.0] Background style power ( 0.0..100.0 ?:help ) : 0.0 [none] Color transfer for src faceset ( none/rct/lct/mkl/idt/sot ?:help ) : none [n] Enable gradient clipping ( y/n ?:help ) : n [n] Enable pretraining mode ( y/n ?:help ) : y Initializing models: 100%|###############################################################| 5/5 [00:12<00:00, 2.56s/it] Loaded 15844 packed faces from C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\pretrain_CelebA Sort by yaw: 100%|##################################################################| 128/128 [00:00<00:00, 366.66it/s] Sort by yaw: 100%|##################################################################| 128/128 [00:00<00:00, 374.15it/s] =============== Model Summary =============== == == == Model name: new_SAEHD == == == == Current iteration: 0 == == == ==------------- Model Options -------------== == == == resolution: 128 == == face_type: f == == models_opt_on_gpu: True == == archi: df == == ae_dims: 256 == == e_dims: 64 == == d_dims: 64 == == d_mask_dims: 22 == == masked_training: True == == eyes_prio: False == == uniform_yaw: True == == lr_dropout: n == == random_warp: False == == gan_power: 0.0 == == true_face_power: 0.0 == == face_style_power: 0.0 == == bg_style_power: 0.0 == == ct_mode: none == == clipgrad: False == == pretrain: True == == autobackup_hour: 0 == == write_preview_history: False == == target_iter: 0 == == random_flip: True == == batch_size: 8 == == == ==-------------- Running On ---------------== == == == Device index: 0 == == Name: GeForce RTX 3090 == == VRAM: 24.00GB == == ==

Starting. Press "Enter" to stop training and save model.

Trying to do the first iteration. If an error occurs, reduce the model parameters.

2020-09-28 04:16:54.919484: E tensorflow/stream_executor/cuda/cuda_blas.cc:428] failed to run cuBLAS routine: CUBLAS_STATUS_EXECUTION_FAILED Error: Blas GEMM launch failed : a.shape=(8, 256), b.shape=(8, 16384), m=256, n=16384, k=8 [[node gradients/MatMul_3_grad/MatMul_1 (defined at C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py:1748) ]]

Original stack trace for 'gradients/MatMul_3_grad/MatMul_1': File "threading.py", line 884, in _bootstrap File "threading.py", line 916, in bootstrap_inner File "threading.py", line 864, in run File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\mainscripts\Trainer.py", line 57, in trainerThread debug=debug, File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\ModelBase.py", line 189, in init self.on_initialize() File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 471, in on_initialize gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.src_dst_trainable_weights ) ] File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\ops_init.py", line 55, in tf_gradients grads = gradients.gradients(loss, vars, colocate_gradients_with_ops=True ) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gradients_impl.py", line 158, in gradients unconnected_gradients) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gradients_util.py", line 679, in _GradientsHelper lambda: grad_fn(op, *out_grads)) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gradients_util.py", line 350, in _MaybeCompile return grad_fn() # Exit early File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gradients_util.py", line 679, in lambda: grad_fn(op, *out_grads)) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\math_grad.py", line 1586, in _MatMulGrad grad_b = gen_math_ops.mat_mul(a, grad, transpose_a=True) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py", line 6136, in mat_mul name=name) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\op_def_library.py", line 794, in _apply_op_helper op_def=op_def) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\util\deprecation.py", line 507, in new_func return func(*args, **kwargs) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 3357, in create_op attrs, op_def, compute_device) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 3426, in _create_op_internal op_def=op_def) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1748, in init self._traceback = tf_stack.extract_stack()

...which was originally created as op 'MatMul_3', defined at: File "threading.py", line 884, in _bootstrap [elided 3 identical lines from previous traceback] File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\ModelBase.py", line 189, in init self.on_initialize() File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 335, in on_initialize gpu_src_code = self.inter(self.encoder(gpu_warped_src)) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in call return self.forward(*args, **kwargs) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 102, in forward x = self.dense2(x) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in call return self.forward(*args, **kwargs) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\layers\Dense.py", line 66, in forward x = tf.matmul(x, weight) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\util\dispatch.py", line 180, in wrapper return target(*args, **kwargs) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\math_ops.py", line 2754, in matmul a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py", line 6136, in mat_mul name=name)

Traceback (most recent call last): File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1365, in _do_call return fn(*args) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1350, in _run_fn target_list, run_metadata) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1443, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8, 256), b.shape=(8, 16384), m=256, n=16384, k=8 [[{{node gradients/MatMul_3_grad/MatMul_1}}]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\mainscripts\Trainer.py", line 123, in trainerThread iter, iter_time = model.train_one_iter() File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\ModelBase.py", line 462, in train_one_iter losses = self.onTrainOneIter() File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 636, in onTrainOneIter src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm_all, warped_dst, target_dst, target_dstm_all) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 503, in src_dst_train self.target_dstm_all:target_dstm_all, File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 956, in run run_metadata_ptr) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1180, in _run feed_dict_tensor, options, run_metadata) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1359, in _do_run run_metadata) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\client\session.py", line 1384, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(8, 256), b.shape=(8, 16384), m=256, n=16384, k=8 [[node gradients/MatMul_3_grad/MatMul_1 (defined at C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py:1748) ]]

Original stack trace for 'gradients/MatMul_3_grad/MatMul_1': File "threading.py", line 884, in _bootstrap File "threading.py", line 916, in bootstrap_inner File "threading.py", line 864, in run File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\mainscripts\Trainer.py", line 57, in trainerThread debug=debug, File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\ModelBase.py", line 189, in init self.on_initialize() File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 471, in on_initialize gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.src_dst_trainable_weights ) ] File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\ops_init.py", line 55, in tf_gradients grads = gradients.gradients(loss, vars, colocate_gradients_with_ops=True ) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gradients_impl.py", line 158, in gradients unconnected_gradients) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gradients_util.py", line 679, in _GradientsHelper lambda: grad_fn(op, *out_grads)) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gradients_util.py", line 350, in _MaybeCompile return grad_fn() # Exit early File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gradients_util.py", line 679, in lambda: grad_fn(op, *out_grads)) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\math_grad.py", line 1586, in _MatMulGrad grad_b = gen_math_ops.mat_mul(a, grad, transpose_a=True) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py", line 6136, in mat_mul name=name) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\op_def_library.py", line 794, in _apply_op_helper op_def=op_def) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\util\deprecation.py", line 507, in new_func return func(*args, **kwargs) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 3357, in create_op attrs, op_def, compute_device) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 3426, in _create_op_internal op_def=op_def) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1748, in init self._traceback = tf_stack.extract_stack()

...which was originally created as op 'MatMul_3', defined at: File "threading.py", line 884, in _bootstrap [elided 3 identical lines from previous traceback] File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\ModelBase.py", line 189, in init self.on_initialize() File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 335, in on_initialize gpu_src_code = self.inter(self.encoder(gpu_warped_src)) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\models\ModelBase.py", line 117, in call return self.forward(*args, **kwargs) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\archis\DeepFakeArchi.py", line 102, in forward x = self.dense2(x) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\layers\LayerBase.py", line 14, in call return self.forward(*args, **kwargs) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\DeepFaceLab\core\leras\layers\Dense.py", line 66, in forward x = tf.matmul(x, weight) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\util\dispatch.py", line 180, in wrapper return target(*args, **kwargs) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\math_ops.py", line 2754, in matmul a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA_internal\python-3.6.8\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py", line 6136, in mat_mul name=name)

sufa5858 avatar Sep 27 '20 20:09 sufa5858