ebm2onnx
ebm2onnx copied to clipboard
A tool to convert EBM models to ONNX
======== Ebm2onnx
.. image:: https://img.shields.io/pypi/v/ebm2onnx.svg :target: https://pypi.python.org/pypi/ebm2onnx
.. image:: https://github.com/interpretml/ebm2onnx/actions/workflows/ci.yml/badge.svg :target: https://github.com/interpretml/ebm2onnx/actions/workflows/ci.yml :alt: CI
.. image:: https://coveralls.io/repos/github/interpretml/ebm2onnx/badge.svg?branch=master :target: https://coveralls.io/github/interpretml/ebm2onnx?branch=master :alt: Code Coverage
.. image:: https://readthedocs.org/projects/ebm2onnx/badge/?version=latest :target: https://ebm2onnx.readthedocs.io/en/latest/?version=latest :alt: Documentation Status
.. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/interpretml/ebm2onnx/master?filepath=examples%2Fconvert.ipynb
Ebm2onnx converts EBM <https://github.com/interpretml/interpret>
_ models to
ONNX. It allows to run an EBM model on any ONNX compliant runtime.
Features
- Binary classification
- Regression
- Continuous, nominal, and ordinal variables
- N-way interactions
- Multi-class classification (support is still experimental in EBM)
- Expose predictions probabilities
- Expose local explanations
The export of the models is tested against ONNX Runtime <https://github.com/Microsoft/onnxruntime>
_.
Get Started
Train an EBM model:
.. code:: python
# prepare dataset
df = pd.read_csv('titanic_train.csv')
df = df.dropna()
feature_columns = ['Age', 'Fare', 'Pclass', 'Embarked']
label_column = "Survived"
y = df[[label_column]]
le = LabelEncoder()
y_enc = le.fit_transform(y)
x = df[feature_columns]
x_train, x_test, y_train, y_test = train_test_split(x, y_enc)
# train an EBM model
model = ExplainableBoostingClassifier(
feature_types=['continuous', 'continuous', 'continuous', 'nominal'],
)
model.fit(x_train, y_train)
Then you can convert it to ONNX in a single function call:
.. code:: python
import onnx
import ebm2onnx
onnx_model = ebm2onnx.to_onnx(
model,
ebm2onnx.get_dtype_from_pandas(x_train),
)
onnx.save_model(onnx_model, 'ebm_model.onnx')
If your dataset is not a pandas dataframe, you can provide the features' types directly:
.. code:: python
import ebm2onnx
onnx_model = ebm2onnx.to_onnx(
model,
dtype={
'Age': 'double',
'Fare': 'double',
'Pclass': 'int',
'Embarked': 'str',
}
)
onnx.save_model(onnx_model, 'ebm_model.onnx')
Try it live
- You can live test the
model conversion <https://mybinder.org/v2/gh/interpretml/ebm2onnx/master?filepath=examples%2Fconvert.ipynb>
_. - You can live test
local explanations <https://mybinder.org/v2/gh/interpretml/ebm2onnx/master?filepath=examples%2Fexplain_local.ipynb>
_.
Supporting organizations
The following organizations are supporting Ebm2onnx:
-
SoftAtHome <https://www.softathome.com>
_: Main supporter of Ebm2onnx development. -
InterpretML <https://interpret.ml>
_: Ebm2onnx is hosted under the umbrella of the InterpretML organization.
|img_sah| |img_interpret|
.. |img_sah| image:: https://raw.githubusercontent.com/interpretml/ebm2onnx/master/assets/sah_logo.png :target: https://www.softathome.com
.. |img_interpret| image:: https://raw.githubusercontent.com/interpretml/ebm2onnx/master/assets/interpretml-logo.png :target: https://interpret.ml