models
models copied to clipboard
Intel® AI Reference Models: contains Intel optimizations for running deep learning workloads on Intel® Xeon® Scalable processors and Intel® Data Center GPUs
Model Zoo for Intel® Architecture
This repository contains links to pre-trained models, sample scripts, best practices, and step-by-step tutorials for many popular open-source machine learning models optimized by Intel to run on Intel® Xeon® Scalable processors.
Model packages and containers for running the Model Zoo's workloads can be found at the Intel® oneContainer Portal.
Purpose of the Model Zoo
- Demonstrate the AI workloads and deep learning models Intel has optimized and validated to run on Intel hardware
- Show how to efficiently execute, train, and deploy Intel-optimized models
- Make it easy to get started running Intel-optimized models on Intel hardware in the cloud or on bare metal
DISCLAIMER: These scripts are not intended for benchmarking Intel platforms. For any performance and/or benchmarking information on specific Intel platforms, visit https://www.intel.ai/blog.
Use cases
The model documentation in the tables below have information on the prerequisites to run each model. The model scripts run on Linux. Select models are also able to run using bare metal on Windows. For more information and a list of models that are supported on Windows, see the documentation here.
Image Recognition
Model | Framework | Mode | Model Documentation | Benchmark/Test Dataset |
---|---|---|---|---|
DenseNet169 | TensorFlow | Inference | FP32 | ImageNet 2012 |
Inception V3 | TensorFlow | Inference | Int8 FP32 | ImageNet 2012 |
Inception V4 | TensorFlow | Inference | Int8 FP32 | ImageNet 2012 |
MobileNet V1* | TensorFlow | Inference | Int8 FP32 BFloat16** | ImageNet 2012 |
ResNet 101 | TensorFlow | Inference | Int8 FP32 | ImageNet 2012 |
ResNet 50 | TensorFlow | Inference | Int8 FP32 | ImageNet 2012 |
ResNet 50v1.5 | TensorFlow | Inference | Int8 FP32 BFloat16** | ImageNet 2012 |
ResNet 50v1.5 | TensorFlow | Training | FP32 BFloat16** | ImageNet 2012 |
Inception V3 | TensorFlow Serving | Inference | FP32 | Synthetic Data |
ResNet 50v1.5 | TensorFlow Serving | Inference | FP32 | Synthetic Data |
GoogLeNet | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
Inception v3 | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
MNASNet 0.5 | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
MNASNet 1.0 | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
ResNet 50 | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
ResNet 50 | PyTorch | Training | FP32 BFloat16** | ImageNet 2012 |
ResNet 101 | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
ResNet 152 | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
ResNext 32x4d | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
ResNext 32x16d | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
VGG-11 | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
VGG-11 with batch normalization | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
Wide ResNet-50-2 | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
Wide ResNet-101-2 | PyTorch | Inference | FP32 BFloat16** | ImageNet 2012 |
Image Segmentation
Model | Framework | Mode | Model Documentation | Benchmark/Test Dataset |
---|---|---|---|---|
3D U-Net | TensorFlow | Inference | FP32 | BRATS 2018 |
3D U-Net MLPerf* | TensorFlow | Inference | FP32 BFloat16** Int8 | BRATS 2019 |
MaskRCNN | TensorFlow | Inference | FP32 | MS COCO 2014 |
UNet | TensorFlow | Inference | FP32 |
Language Modeling
Model | Framework | Mode | Model Documentation | Benchmark/Test Dataset |
---|---|---|---|---|
BERT | TensorFlow | Inference | FP32 BFloat16** | SQuAD |
BERT | TensorFlow | Training | FP32 BFloat16** | SQuAD and MRPC |
BERT base | PyTorch | Inference | FP32 BFloat16** | BERT Base SQuAD1.1 |
BERT large | PyTorch | Inference | FP32 Int8 BFloat16** | BERT Large SQuAD1.1 |
BERT large | PyTorch | Training | FP32 BFloat16** | preprocessed text dataset |
DistilBERT base | PyTorch | Inference | FP32 BFloat16** | DistilBERT Base SQuAD1.1 |
RNN-T | PyTorch | Inference | FP32 BFloat16** | RNN-T dataset |
RNN-T | PyTorch | Training | FP32 BFloat16** | RNN-T dataset |
RoBERTa base | PyTorch | Inference | FP32 BFloat16** | RoBERTa Base SQuAD 2.0 |
Language Translation
Model | Framework | Mode | Model Documentation | Benchmark/Test Dataset |
---|---|---|---|---|
BERT | TensorFlow | Inference | FP32 | MRPC |
GNMT* | TensorFlow | Inference | FP32 | MLPerf GNMT model benchmarking dataset |
Transformer_LT_mlperf* | TensorFlow | Training | FP32 BFloat16** | WMT English-German dataset |
Transformer_LT_mlperf* | TensorFlow | Inference | FP32 BFloat16** Int8 | WMT English-German data |
Transformer_LT_Official | TensorFlow | Inference | FP32 | WMT English-German dataset |
Transformer_LT_Official | TensorFlow Serving | Inference | FP32 |
Object Detection
Model | Framework | Mode | Model Documentation | Benchmark/Test Dataset |
---|---|---|---|---|
Faster R-CNN | TensorFlow | Inference | Int8 FP32 | COCO 2017 validation dataset |
R-FCN | TensorFlow | Inference | Int8 FP32 | COCO 2017 validation dataset |
SSD-MobileNet* | TensorFlow | Inference | Int8 FP32 BFloat16** | COCO 2017 validation dataset |
SSD-ResNet34* | TensorFlow | Inference | Int8 FP32 BFloat16** | COCO 2017 validation dataset |
SSD-ResNet34 | TensorFlow | Training | FP32 BFloat16** | COCO 2017 training dataset |
SSD-MobileNet | TensorFlow Serving | Inference | FP32 | |
Faster R-CNN ResNet50 FPN | PyTorch | Inference | FP32 BFloat16** | COCO 2017 |
Mask R-CNN | PyTorch | Inference | FP32 BFloat16** | COCO 2017 |
Mask R-CNN | PyTorch | Training | FP32 BFloat16** | COCO 2017 |
Mask R-CNN ResNet50 FPN | PyTorch | Inference | FP32 BFloat16** | COCO 2017 |
RetinaNet ResNet-50 FPN | PyTorch | Inference | FP32 BFloat16** | COCO 2017 |
SSD-ResNet34 | PyTorch | Inference | FP32 Int8 BFloat16** | COCO 2017 |
SSD-ResNet34 | PyTorch | Training | FP32 BFloat16** | COCO 2017 |
Recommendation
Model | Framework | Mode | Model Documentation | Benchmark/Test Dataset |
---|---|---|---|---|
DIEN | TensorFlow | Inference | FP32 BFloat16** | DIEN dataset |
DIEN | TensorFlow | Training | FP32 | DIEN dataset |
NCF | TensorFlow | Inference | FP32 | MovieLens 1M |
Wide & Deep | TensorFlow | Inference | FP32 | Census Income dataset |
Wide & Deep Large Dataset | TensorFlow | Inference | Int8 FP32 | Large Kaggle Display Advertising Challenge dataset |
Wide & Deep Large Dataset | TensorFlow | Training | FP32 | Large Kaggle Display Advertising Challenge dataset |
DLRM | PyTorch | Inference | FP32 Int8 BFloat16** | Criteo Terabyte |
DLRM | PyTorch | Training | FP32 BFloat16** | Criteo Terabyte |
Reinforcement
Model | Framework | Mode | Model Documentation | Benchmark/Test Dataset |
---|---|---|---|---|
MiniGo | TensorFlow | Training | FP32 |
Text-to-Speech
Model | Framework | Mode | Model Documentation | Benchmark/Test Dataset |
---|---|---|---|---|
WaveNet | TensorFlow | Inference | FP32 |
Shot Boundary Detection
Model | Framework | Mode | Model Documentation | Benchmark/Test Dataset |
---|---|---|---|---|
TransNetV2 | PyTorch | Inference | FP32 BFloat16** | Synthetic Data |
*Means the model belongs to MLPerf models and will be supported long-term.
How to Contribute
If you would like to add a new benchmarking script, please use this guide.