BigDL-2.x
BigDL-2.x copied to clipboard
Chronos: When the dataset is multivariate, Auto Model and Autotsest may have negative improvements.
When I used forecaster\automodel\autotsest in the same file and tested it six times with the parameters unchanged, there were 3 negative improvements and 3 positive improvements. P.S. The dataset is network_traffic, and there is no similar situation on the univariate dataset. log path: cpx2-->/home/cpx/liangs/mul_single_log.txt
# TCNForecaster mse(AvgRate) 28026.504694819632
# TCNForecaster mse(total) 2.283820957717442e+22
# AutoTCN mse(AvgRate) 15804.34013031733 improve by 43.609307323868414 %
# AutoTCN mse(total) 1.2805747653238046e+22 improve by 43.92840817943666 %
# AutoTSEstimator mse(AvgRate) 11827.337451242214 improve by 57.799455979152626 %
# AutoTSEstimator mse(total) 9.407867757317523e+21 improve by 58.80645667285501 %
# TCNForecaster mse(AvgRate) 14584.228766034217
# TCNForecaster mse(total) 1.1828622532188679e+22
# AutoTCN mse(AvgRate) 15945.982666076641 improve by -9.337167716498428 %
# AutoTCN mse(total) 1.30109186373673e+22 improve by -9.995213744975754 %
# AutoTSEstimator mse(AvgRate) 18524.652257574562 improve by -27.018387840413965 %
# AutoTSEstimator mse(total) 1.5047155456221437e+22 improve by -27.20970185052668 %
The issue may caused by your param setting in AutoTSEstimator
future_seq_len=hp.randint(5, 10*2),
This may make the forecasting task to change (and it should not happen).
Still this give us an alarm that we need to give a runtime error when user give an hp sampling function to future_seq_len
related doc: https://analytics-zoo.readthedocs.io/en/latest/doc/PythonAPI/Chronos/autotsestimator.html#autotsestimator