RefineDNet-for-dehazing
RefineDNet-for-dehazing copied to clipboard
The Pytorch implementation for "RefineDNet: A Weakly Supervised Refinement Framework for Single Image Dehazing" (TIP 2021)
RefineDNet for dehazing
RefineDNet is a two-stage dehazing framework which can be weakly supervised using real-world unpaired images. That is, the training set never requires paired hazy and haze-free images coming from the same scene.
In the first stage, it adopts DCP to restore visibility of the input hazy image.
In the second stage, it improves the realness of preliminary results from the first stage via CNNs.
RefineDNet is outlined in the following figure, and more details can be found in the paper (or this link) titled as RefineDNet: A Weakly Supervised Refinement Framework for Single Image Dehazing. (Early Access in Trans. Image Process.)

Our Environment
- Ubuntu 16.06
- Python (>= 3.5)
- PyTorch (>= 1.1.0) with CUDA 9.0
- torchvision (>=0.3.0)
- numpy (>= 1.17.0)
Testing
Download the pretrained models.
-
Get the model on Google drive or BaiduYun Disk (Key: bswu). It's trained on RESIDE-unpaired.
-
Create a folder named
checkpoints, and unziprefined_DCP_outdoor.zipin./checkpoints. Now, your directory tree should look like
<RefineDNet_root>
├── checkpoints
│ ├── refined_DCP_outdoor
│ │ ├── 60_net_D.pth
│ │ ├── 60_net_Refiner_J.pth
│ │ ├── 60_net_Refiner_T.pth
│ │ └── test_opt.txt
│ ...
...
Quick test on real-world images
-
Download the pretrained model on RESIDE-unpaired (see above).
-
Run the following command from <RefineDNet_root>.
python quick_test.py --dataroot ./datasets/quick_test --dataset_mode single --name refined_DCP_outdoor --model refined_DCP --phase test --preprocess none --save_image --method_name refined_DCP_outdoor_ep_60 --epoch 60
The results will be saved in the folder <RefineDNet_root>/datatsets/quick_test/refined_DCP_outdoor_ep_60.
Test on BeDDE
-
Download the pretrained model on BeDDE.
-
Run the following command from
<RefineDNet_root>.
python test_BeDDE.py --dataroot <BeDDE_root> --dataset_mode simple_bedde --bedde_list ./datasets/BeDDE/bedde_list.txt --name refined_DCP_outdoor --model refined_DCP --phase test --preprocess none --save_image --method_name refined_DCP_outdoor_ep_60 --epoch 60
The results will be saved in the folder <BeDDE_root>/<city_name>/refined_DCP_outdoor_ep_60.
Training
Train RefineDNet on RESIDE-unpaired
- Download RESIDE-unpaired on Google drive or BaiduYun Disk (Key: bswu). Unzip
RESIDE-unpaired.zipin the folder <RefineDNet_root>/datasets. Your directory tree should look like
<RefineDNet_root>
├── datasets
│ ├── BeDDE
│ ├── RESIDE-unpaired
│ │ ├── trainA
│ │ └── trainB
│ ...
...
-
Open visdom by
python -m visdom.server -
Run the following command from
<RefineDNet_root>.
python train.py --dataroot ./datasets/RESIDE-unpaired --dataset_mode unpaired --model refined_DCP --name refined_DCP_outdoor --niter 30 --niter_decay 60 --lr_decay_iters 10 --preprocess scale_min_and_crop --load_size 300 --crop_size 256 --num_threads 8 --save_epoch_freq 3
Train RefineDNet on ITS (from RESIDE-standard)
-
Download ITS here. Unzip hazy.zip and clear.zip into
<RefineDNet_root>/datasets/ITS. -
Rename the hazy image folder as
trainAand the clear image folder astrainB. Then, your directory tree should look like
<RefineDNet_root>
├── datasets
│ ├── BeDDE
│ ├── ITS
│ │ ├── trainA
│ │ └── trainB
│ ...
...
-
Open visdom by
python -m visdom.server -
Run the following command from
<RefineDNet_root>.
python train.py --dataroot ./datasets/ITS --dataset_mode unpaired --model refined_DCP --name refined_DCP_indoor --niter 30 --niter_decay 60 --lr_decay_iters 5 --preprocess scale_width_and_crop --load_size 372 --crop_size 256 --num_threads 8 --save_epoch_freq 1
Results
Some dehazing samples from BeDDE and the Internet produced by various methods.

Useful links
-
This code is based on CycleGAN