MEGALODON: ML/DL Resources At One Place
 
| Summer Schools/Seminars | Focus Areas | Comments | 
| MLSS, Tubingen 07 |  |  | 
| Cambridge |  |  | 
| MLSS Purdue |  |  | 
| DLSS, Montreal 2015 |  |  | 
| DLSS, Montreal 2016 |  |  | 
| Deep Learning School, 2016 |  | All Videos | 
| DLSS & RLSS, Montreal 2017 |  |  | 
| MLSS, Kioloa 08 |  |  | 
| MLSS, Chicago 09 |  |  | 
| MLSS, Canberra 02 |  |  | 
| MSR India MLSS, 2015 |  |  | 
| AI Summer School, 2017 |  |  | 
| Deep RL Bootcamp, Berkeley |  |  | 
| IPAM Deep Learning, Feature Learning, 2012 |  |  | 
| MLSS, Max Plank Institute, 2017 |  |  | 
| MLSS, CMU 2014 |  |  | 
| Deep Learning: Theory, Algorithms, and Applications |  |  | 
| Gaussian Process Summer Schools |  |  | 
| MLSS, Iceland, 2014 |  |  | 
| MLSS Sydney 15 |  |  | 
| MLSS London 2019 |  |  | 
| New Tech in Math Seminar |  |  | 
Other Blogs
- https://smerity.com/articles/articles.html
- http://veredshwartz.blogspot.in/
- https://stats385.github.io/blogs
- https://blogs.princeton.edu/imabandit/
- https://www.countbayesie.com
- http://building-babylon.net/
- While My MCMC Gently Samples
- http://www.marekrei.com/blog/online-representation-learning-in-recurrent-neural-language-models/
- http://mlg.eng.cam.ac.uk/yarin/blog.html
- https://blogs.msdn.microsoft.com/ericlippert/
- https://ericlippert.com/
- https://blogs.msdn.microsoft.com/ericlippert/tag/high-dimensional-spaces/
- http://blog.echen.me/
- radford neal's blog https://radfordneal.wordpress.com/
- http://timvieira.github.io/blog/archives.html
- http://p.migdal.pl/
- https://www.quora.com/What-are-the-best-machine-learning-blogs-or-resources-available
- http://ml.typepad.com/machine_learning_thoughts/
- https://jmetzen.github.io/
- http://peekaboo-vision.blogspot.in/
- http://sebastianruder.com/word-embeddings-1/index.html?utm_content=bufferca13e&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
- https://jamesmccaffrey.wordpress.com/
- http://alexey.radul.name/2/
- https://www.reddit.com/r/MachineLearning/comments/4juw5z/cool_deep_learning_ml_blogs/
- http://dsnotes.com/
- http://mccormickml.com/
- http://approximatelycorrect.com/
- http://timdettmers.com/2015/03/26/convolution-deep-learning/
- https://campus2.acm.org/public/qj/brandingqj/xrds.cfm
- http://www.kemaswill.com/
- https://jacobgil.github.io/
- http://www.argmin.net/
- http://tscholak.github.io/
- https://theneuralperspective.com/
- https://devblogs.nvidia.com/parallelforall/
- http://textminingonline.com/
- http://douglasduhaime.com/blog/clustering-semantic-vectors-with-python
- https://telecombcn-dl.github.io/2017-dlcv/
- cs 231 http://cs231n.stanford.edu/, cs 221 http://web.stanford.edu/class/cs221/
- http://nlpforhackers.io/
- Keras, Torch, TF, http://dp.readthedocs.io/en/latest/index.html , Theano blogs are also very useful.
- http://gkalliatakis.com/blog/delving-deep-into-gans
- https://oshearesearch.com/
- https://www.youtube.com/watch?v=Xogn6veSyxA&list=PLbwivfGkPdvi4Pn66Yc8TWpNy18OhEhW_
- https://terrytao.wordpress.com/2017/03/01/special-cases-of-shannon-entropy/
- http://nlp.yvespeirsman.be/
- http://bcomposes.com/2015/11/26/simple-end-to-end-tensorflow-examples/
- https://prateekvjoshi.com/
- http://anie.me/
- http://wellredd.uk/
- http://p.migdal.pl/2017/04/30/teaching-deep-learning.html
- https://www.countbayesie.com/blog/2017/5/9/kullback-leibler-divergence-explained
- https://vkrakovna.wordpress.com/
- https://codingmachinelearning.wordpress.com/
- http://www.seaandsailor.com/index.html
- http://www.kentran.net/
- http://arogozhnikov.github.io/
- http://philipperemy.github.io/
- http://appliedpredictivemodeling.com/blog/2014/11/27/08ks7leh0zof45zpf5vqe56d1sahb0
- http://andymiller.github.io/blog/
- http://www.argmin.net/
- http://setosa.io/ev/
- http://rbharath.github.io/
- http://wiseodd.github.io/
- https://www.neurolab.de/cosine_notes.html
- http://willwolf.io/
- http://www.minimizingregret.com/
- http://bookworm.benschmidt.org/index.html
- http://www.brainyblog.net/
- https://iksinc.wordpress.com/
- https://erikbern.com/
- https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
- http://dustintran.com/blog/
- http://blog.kaggle.com/
- http://jponttuset.cat/blog/
- http://blog.echen.me/2017/05/30/exploring-lstms/
- http://deliprao.com/archives/187
- http://www.ams.org/samplings/feature-column/fcarc-svd
- https://www.countbayesie.com/all-posts/
- http://briandolhansky.com/blog/2013/7/8/ml-primers
- http://iamtrask.github.io/
- https://hips.seas.harvard.edu/blog/
- https://jeremykun.com/
- https://theclevermachine.wordpress.com/
- http://nlp.yvespeirsman.be/blog/
- http://andrew.gibiansky.com/
- https://joanna-bryson.blogspot.de/
- http://tullo.ch/
- http://yanran.li/
- https://theneural.wordpress.com/
- http://jotterbach.github.io/archive/
- http://ischlag.github.io/
- http://www.marekrei.com/blog/
- http://alexhwilliams.info/itsneuronalblog/
- http://planspace.org/
- https://shapeofdata.wordpress.com/page/2/
- https://machinethoughts.wordpress.com/
- http://shubhanshu.com/blog/
- https://gmarti.gitlab.io/
- http://www.panderson.me/blog/
- http://giorgiopatrini.org/posts/2017/09/06/in-search-of-the-missing-signals/
- http://www-users.cs.umn.edu/~verma/blog.html
- https://www.papernot.fr/en/blog
- https://gab41.lab41.org/
- http://blog.smola.org/
- http://mogren.one/blog/
- http://www.alexirpan.com/ good batchnorm
- https://machinethoughts.wordpress.com/
- http://deepdish.io/page3/
- https://github.com/ml4a ml for artists
- https://severelytheoretical.wordpress.com/
- https://codingmachinelearning.wordpress.com
- https://kratzert.github.io/openlearning
- https://recast.ai/
- https://www.techemergence.com/artificial-intelligence-podcast/