facereg
                                
                                
                                
                                    facereg copied to clipboard
                            
                            
                            
                        Python module for face recognition with OpenCV and Deep Learning.
facereg
.. image:: https://img.shields.io/pypi/v/facereg.svg :target: https://pypi.org/pypi/facereg/
.. image:: https://img.shields.io/pypi/pyversions/facereg.svg :target: https://pypi.org/project/facereg
.. image:: https://github.com/verifid/facereg/workflows/facereg%20ci/badge.svg :target: https://github.com/verifid/facereg/actions
.. image:: https://codecov.io/gh/verifid/facereg/branch/master/graph/badge.svg :target: https://codecov.io/gh/verifid/facereg
.. image:: https://pepy.tech/badge/facereg :target: https://pepy.tech/project/facereg
facereg is a module for face recognition with OpenCV and Deep Learning.
For now it can be used for just images. It is easy to use with a handy feature which downloads images from Google for you with given keywords to create dataset/s.
Uses two different technics CNN and HoG for recognition based on dlib <http://dlib.net/>'s
face recognition system with using face_recognition <https://github.com/ageitgey/face_recognition>.
facereg has totally three different layers and only recognizer has connection on encoder.
|image_layers|
Prerequisites
CMake <https://cmake.org>_- All dependencies are listed on 
requirements.txtand will be installed when you install with pip. 
Installation
- 
Install module using
pip::$ pip install facereg
 - 
Download the latest
facereglibrary from: https://github.com/verifid/facereg and install module usingpip::$ pip install -e .
 - 
Extract the source distribution and run::
$ python setup.py build $ python setup.py install
 
Usage
google_images:
.. code:: python
import os
from facereg import google_images
output_directory = os.getcwd() + '/datasets' # directory path where you want to save photos
image_paths = google_images.download('michael jordan', limit=3)
face_encoder:
.. code:: python
import os
from facereg import face_encoder
datasets_path = os.getcwd() + '/datasets'
encodings_path = os.path.dirname(os.path.realpath(__file__)) + '/encodings.pickle'
# these are default values for this method
face_encoder.encode_faces(datasets=datasets_path, encodings=encodings_path, detection_method='cnn')
recognize_faces:
.. code:: python
from facereg import recognize_faces
image_path = 'DIRECTORY PATH OF YOUR_IMAGE'
names = recognize_faces.recognize(image_path)
# returns found names from your datasets
CLI Usage
- Download images
 
.. code::
# -d: keyword, -l: limit
$ python -m facereg -d 'michael jordan'
$ python -m facereg -d 'michael jordan' -l 5
- Recognition
 
.. code::
# -i: Directory path for image
$ python -m facereg -i tests/resources/michael_jordan.jpeg
Sample Result
|image_sample|
.. |image_layers| image:: https://raw.githubusercontent.com/verifid/facereg/master/resources/layers.png .. |image_sample| image:: https://raw.githubusercontent.com/verifid/facereg/master/resources/mj&sp.png