flex
flex copied to clipboard
FLex: Fuzzy Logic for Elixir
FLex
A toolkit for fuzzy logic, this library includes functions to make fuzzy sets, variables and rules for creating a Fuzzy Logic System (FLS).
The goal of FLex is to easily design and efficiently operate fuzzy logic controllers without relying on external libraries.
Index
-
Features
-
Installation
-
Usage
- Sets
- Variables
- Rules
- System
- ANFIS
-
Documentation
-
Contributing
-
License
-
TODO
Features
The following list is the current supported backend for each component of the FLS:
-
Linguistic Rules:
- Lambda function syntax
- Tuple syntax
-
Membership functions:
- Triangular
- Trapezoidal
- Saturation
- Shoulder
- Gauss
- Generalized Bell
- Sigmoid
- Z-shaped
- S-shaped
- Pi-shaped
- Linear Combination (Takagi-Sugeno, ANFIS only)
-
Fuzzy Inference Systems:
-
Mamdani:
-
Inference:
- Min
-
Output Combination:
- Root-sum-square
-
Defuzzification:
- Centroid
-
-
Takagi-Sugeno:
-
Inference:
- Max
- Product
-
Defuzzification:
- Weighted average
-
-
ANFIS:
-
Inference:
- Max
- Product
-
Defuzzification:
- Weighted average
-
Optimization Method:
- Backpropagation.
- Hybrid (Backpropagation, LSE).
-
-
NOTE: All systems are single output.
Installation
The package can be installed by adding flex to your list of dependencies in mix.exs:
def deps do
[
{:flex, "~> 0.1.0"}
]
end
Usage
Sets
Step 1: Define all fuzzy sets with Flex.Set.new/1, the following options are require:
mf_type- (string) Defines which type of membership function uses the set (e.g., "triangle").tag- (string) defines the linguistic name of the fuzzy set (e.g., "too hot"),mf_params- The parameters of the membership function, see Membership functions.
t_h = Flex.Set.new(tag: "too hot", mf_type: "saturation", mf_params: [-2, 0, -4])
j_r = Flex.Set.new(tag: "just right", mf_type: "triangle", mf_params: [-2, 0, 2])
t_c = Flex.Set.new(tag: "too cold", mf_type: "shoulder", mf_params: [0, 2, 4])
g_h = Flex.Set.new(tag: "getting hotter", mf_type: "saturation", mf_params: [-5, 0, -10])
n_c = Flex.Set.new(tag: "no change", mf_type: "triangle", mf_params: [-5, 0, 5])
g_c = Flex.Set.new(tag: "getting colder", mf_type: "shoulder", mf_params: [0, 5, 10])
co = Flex.Set.new(tag: "cool", mf_type: "saturation", mf_params: [-50, 0, -100])
d_n = Flex.Set.new(tag: "do nothing", mf_type: "triangle", mf_params: [-50, 0, 50])
he = Flex.Set.new(tag: "heat", mf_type: "shoulder", mf_params: [0, 50, 100])
Variables
Step 2: Define all fuzzy variables with Flex.Variable.new/1, the following options are required:
:tag- (string) Defines the linguistic name of the fuzzy variable (e.g., "error"),:fuzzy_sets- (list) Defines which type of membership function use the set (e.g., "triangle").:type- (atom) Defines the type of variable (e.g., :antecedent or :consequent),:range- (range) The range in which the variable exists.
fuzzy_sets = [t_h, j_r, t_c]
error = Flex.Variable.new(tag: "error", fuzzy_sets: fuzzy_sets, type: :antecedent, range: -4..4)
fuzzy_sets = [g_h, n_c, g_c]
dt_error = Flex.Variable.new(tag: "dt_error", fuzzy_sets: fuzzy_sets, type: :antecedent, range: -10..10)
fuzzy_sets = [co, d_n, he]
output = Flex.Variable.new(tag: "output", fuzzy_sets: fuzzy_sets, type: :consequent, range: -100..100)
Rules
Currently there are two types of syntax for defining the rules statement:
- Anonymous function syntax:
r1 = fn [at1, at2, con] ->
(at1 ~> "too hot" &&& at2 ~> "getting colder") >>> con ~> "cool"
end
- Tuple syntax:
r1 = {{{{"error", "too hot", "~>"}, {"dt_error", "getting colder", "~>"}, "&&&"}, "output",
">>>"}, "cool", "~>"}
Step 3: Define all Linguistic rules with Flex.Rule.new/1, the following options are required:
:statement- Defines the rule behavior.:antecedent- (list) Defines the input variables.:consequent- Defines the output variable.
import Flex.Rule
r1 =
{{{{"error", "too hot", "~>"}, {"dt_error", "getting colder", "~>"}, "&&&"}, "output",
">>>"}, "cool", "~>"}
r2 =
{{{{"error", "just right", "~>"}, {"dt_error", "getting colder", "~>"}, "&&&"}, "output",
">>>"}, "heat", "~>"}
r3 =
{{{{"error", "too cold", "~>"}, {"dt_error", "getting colder", "~>"}, "&&&"}, "output",
">>>"}, "heat", "~>"}
r4 =
{{{{"error", "too hot", "~>"}, {"dt_error", "no change", "~>"}, "&&&"}, "output", ">>>"},
"cool", "~>"}
r5 =
{{{{"error", "just right", "~>"}, {"dt_error", "no change", "~>"}, "&&&"}, "output", ">>>"},
"do nothing", "~>"}
r6 =
{{{{"error", "too cold", "~>"}, {"dt_error", "no change", "~>"}, "&&&"}, "output", ">>>"},
"heat", "~>"}
r7 =
{{{{"error", "too hot", "~>"}, {"dt_error", "getting hotter", "~>"}, "&&&"}, "output",
">>>"}, "cool", "~>"}
r8 =
{{{{"error", "just right", "~>"}, {"dt_error", "getting hotter", "~>"}, "&&&"}, "output",
">>>"}, "cool", "~>"}
r9 =
{{{{"error", "too cold", "~>"}, {"dt_error", "getting hotter", "~>"}, "&&&"}, "output",
">>>"}, "cool", "~>"}
rule1 = Flex.Rule.new(statement: r1, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
rule2 = Flex.Rule.new(statement: r2, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
rule3 = Flex.Rule.new(statement: r3, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
rule4 = Flex.Rule.new(statement: r4, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
rule5 = Flex.Rule.new(statement: r5, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
rule6 = Flex.Rule.new(statement: r6, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
rule7 = Flex.Rule.new(statement: r7, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
rule8 = Flex.Rule.new(statement: r8, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
rule9 = Flex.Rule.new(statement: r9, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
rules = [rule1, rule2, rule3, rule4, rule5, rule6, rule7, rule8, rule9]
Note: You need to import Flex.Rule module.
System
Step 4: Define FLS with Flex.System.start_link/1 or Flex.System.start_link/2 if you want to overwrite the GenServer options; the following options are require:
:rules- Defines the behavior of the system based on a list of rules.:antecedent- (list) Defines the input variables.:consequent- Defines the output variable.:engine_type- Defines the inference engine behavior (default: Mamdini).
{:ok, s_pid} = Flex.System.start_link(antecedent: [error, dt_error], consequent: output, rules: rules)
Step 5: Fit the FLS with a input vector using Flex.System.compute/2.
result = Flex.System.compute(s_pid, [-1, -2.5])
#result ~= -63.4 aprox
In test/system_test.exs there is an example of use, that is based on this example.
ANFIS
An adaptive network-based fuzzy inference system (ANFIS) is a kind of artificial neural network that is based on Takagi–Sugeno fuzzy inference system, this implementation use backpropagation, only Gaussian & Generalized Bell Membership functions are allowed. In examples/anfis_demo1.exs there is an example of use.
Documentation
The docs can be found at https://hexdocs.pm/flex.
Contributing
- Fork our repository on github.
- Fix or add what is needed.
- Commit to your repository.
- Issue a github pull request (fill the PR template).
License
See LICENSE.
TODO
- Add more membership functions.
- Add more inference methods.
- Add more defuzzification methods.
- Add helper functions.
- Add metaprogramming for linguistic rules.