malicious-urls-detection-with-autoencoder-neural-networks
malicious-urls-detection-with-autoencoder-neural-networks copied to clipboard
Detecting malicious URLs using an autoencoder neural network
Malicious URLs detection with autoencoder neural network
This repository contains the source code of Detecting malicious URLs using an autoencoder neural network. An article describing how it works is available at https://www.linkedin.com/pulse/anomaly-detection-autoencoder-neural-network-applied-urls-daboubi/
Requirements
- Python 3.9
- x64 CPU
- Tensorflow-compatible NVIDIA GPU
Install required libraries
pip3 install -r requirements.txt
Merge Inversion blocklist (Google_hostnames.txt) with url_data.csv
python merge_url_data.py
Generated new enriched data
python enrich_urls_data.py
Build and test a model
python train_and_test_urls_autoencoder.py
TODO
To put in place a REST API
Dataset sources
- https://www.kaggle.com/datasets/antonyj453/urldataset
- https://www.kaggle.com/datasets/dfydata/the-online-plain-text-english-dictionary-opted
- https://github.com/elliotwutingfeng/Inversion-DNSBL-Blocklists