skift
skift copied to clipboard
scikit-learn wrappers for Python fastText.
skift |skift_icon| ################## |PyPI-Status| |Downloads| |PyPI-Versions| |Build-Status| |Codecov| |Codefactor| |LICENCE|
.. |skift_icon| image:: https://github.com/shaypal5/skift/blob/be1f8e84d311f926fd39e8ea421525782b4cb39f/skift.png
scikit-learn wrappers for Python fastText.
.. code-block:: python
from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl']) sk_clf = FirstColFtClassifier(lr=0.3, epoch=10) sk_clf.fit(df[['txt']], df['lbl']) sk_clf.predict([['woof']]) [0]
.. contents::
.. section-numbering::
Installation
Dependencies:
numpyscipyscikit-learn- The
fasttextPython package
.. code-block:: bash
pip install skift
Configuration
Because fasttext reads input data from files, skift has to dump the input data into temporary files for fasttext to use. A dedicated folder is created for those files on the filesystem. By default, this storage is allocated in the system temporary storage location (i.e. /tmp on *nix systems). To override this default location, use the SKIFT_TEMP_DIR environment variable:
.. code-block:: bash
export SKIFT_TEMP_DIR=/path/to/desired/temp/folder
NOTE: The directory will be created if it does not already exist.
Features
- Adheres to the
scikit-learnclassifier API, includingpredict_proba. - Also caters to the common use case of
pandas.DataFrameinputs. - Enables easy stacking of
fastTextwith other types ofscikit-learn-compliant classifiers. - Pickle-able classifier objects.
- Built around the
official fasttext Python package <https://github.com/facebookresearch/fastText/tree/master/python>_. - Pure python.
- Supports Python 3.5+.
Fully tested on Linux, OSX and Windows operating systems <https://travis-ci.org/shaypal5/skift>_.
Wrappers
fastText works only on text data, which means that it will only use a single column from a dataset which might contain many feature columns of different types. As such, a common use case is to have the fastText classifier use a single column as input, ignoring other columns. This is especially true when fastText is to be used as one of several classifiers in a stacking classifier, with other classifiers using non-textual features.
skift includes several scikit-learn-compatible wrappers (for the official <https://github.com/facebookresearch/fastText/tree/master/python>_ fastText Python package) which cater to these use cases.
NOTICE: Any additional keyword arguments provided to the classifier constructor, besides those required, will be forwarded to the fastText.train_supervised method on every call to fit.
Standard wrappers
These wrappers do not make additional assumptions on input besides those commonly made by scikit-learn classifies; i.e. that input is a 2d ndarray object and such.
FirstColFtClassifier- An sklearn classifier adapter for fasttext that takes the first column of inputndarrayobjects as input.
.. code-block:: python
from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl']) sk_clf = FirstColFtClassifier(lr=0.3, epoch=10) sk_clf.fit(df[['txt']], df['lbl']) sk_clf.predict([['woof']]) [0]
IdxBasedFtClassifier- An sklearn classifier adapter for fasttext that takes input by column index. This is set on object construction by providing theinput_ixparameter to the constructor.
.. code-block:: python
from skift import IdxBasedFtClassifier df = pandas.DataFrame([[5, 'woof', 0], [83, 'meow', 1]], columns=['count', 'txt', 'lbl']) sk_clf = IdxBasedFtClassifier(input_ix=1, lr=0.4, epoch=6) sk_clf.fit(df[['count', 'txt']], df['lbl']) sk_clf.predict([['woof']]) [0]
pandas-dependent wrappers
These wrappers assume the X parameter given to fit, predict, and predict_proba methods is a pandas.DataFrame object:
FirstObjFtClassifier- An sklearn adapter for fasttext using the first column ofdtype == objectas input.
.. code-block:: python
from skift import FirstObjFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl']) sk_clf = FirstObjFtClassifier(lr=0.2) sk_clf.fit(df[['txt']], df['lbl']) sk_clf.predict([['woof']]) [0]
ColLblBasedFtClassifier- An sklearn adapter for fasttext taking input by column label. This is set on object construction by providing theinput_col_lblparameter to the constructor.
.. code-block:: python
from skift import ColLblBasedFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl']) sk_clf = ColLblBasedFtClassifier(input_col_lbl='txt', epoch=8) sk_clf.fit(df[['txt']], df['lbl']) sk_clf.predict([['woof']]) [0]
SeriesFtClassifier- An sklearn adapter for fasttext taking a Pandas Series as input.
.. code-block:: python
from skift import SeriesFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl']) sk_clf = SeriesFtClassifier(input_col_lbl='txt', epoch=8) sk_clf.fit(df['txt'], df['lbl']) sk_clf.predict(['woof']) sk_clf.predict(df['txt'])
Hyperparameter auto-tuning
It's possible to pass a validation set to fit() in order to optimize the hyper-parameters.
First, to adjust the auto-tune settings <https://fasttext.cc/docs/en/autotune.html>_, the corresponding keyword arguments can be passed to the constructor (if none are passed the default settings are used):
.. code-block:: python
from skift import SeriesFtClassifier df_train = pandas.DataFrame([['woof', 0], ['meow', 1]], columns=['txt', 'lbl']) df_val = pandas.DataFrame([['woof woof', 0], ['meow meow', 1]], columns=['txt', 'lbl']) sk_clf = SeriesFtClassifier(epoch=8, autotuneDuration=5)
Then, the validation dataframe (or series, in this case, since we constructed a SeriesFtClassifier) and label column should be provided to the fit() method:
.. code-block:: python
sk_clf.fit(df_train['txt'], df_train['lbl'], X_validation=df_val['txt'], y_validation=df_val['lbl'])
Or simply by position:
.. code-block:: python
sk_clf.fit(df_train['txt'], df_train['lbl'], df_val['txt'], df_val['lbl'])
Using Pre-trained word vectors
This is done in the exact same way as with the Python module or the fastText CLI, but not setting the right vector dimensions in the constructor (identical to the dimensions of the pretrained vectors you are using) will crash fastText without explanation, so we provide an example:
.. code-block:: python
from skift import SeriesFtClassifier
ft_clf = SeriesFtClassifier(
autotuneDuration=900,
pretrainedVectors='/Users/myuser/data/word_vectors/crawl-300d-2M.vec',
dim=300,
)
In this case, not providing the constructor with dim=300 would bring about a crash when calling ft_clf.fit().
Contributing
Package author and current maintainer is Shay Palachy ([email protected]); You are more than welcome to approach him for help. Contributions are very welcomed.
Installing for development
Clone:
.. code-block:: bash
git clone [email protected]:shaypal5/skift.git
Install in development mode, including test dependencies:
.. code-block:: bash
cd skift pip install -e '.[test]'
To also install fasttext, see instructions in the Installation section.
Running the tests
To run the tests use:
.. code-block:: bash
cd skift pytest
Adding documentation
The project is documented using the numpy docstring conventions, which were chosen as they are perhaps the most widely-spread conventions that are both supported by common tools such as Sphinx and result in human-readable docstrings. When documenting code you add to this project, follow these conventions.
.. _numpy docstring conventions: https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
.. _these conventions: https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
Additionally, if you update this README.rst file, use python setup.py checkdocs to validate it compiles.
Credits
Created by Shay Palachy ([email protected]).
Contributions:
Dimid Duchovny <https://github.com/dimidd>_contributed theSeriesFtClassifierclass and the hyperparameter auto-tuning capability.
Fixes: uniaz <https://github.com/uniaz>, crouffer <https://github.com/crouffer>, amirzamli <https://github.com/amirzamli>_ and sgt <https://github.com/sgt>_.
.. |PyPI-Status| image:: https://img.shields.io/pypi/v/skift.svg :target: https://pypi.python.org/pypi/skift
.. |PyPI-Versions| image:: https://img.shields.io/pypi/pyversions/skift.svg :target: https://pypi.python.org/pypi/skift
.. |Build-Status| image:: https://github.com/shaypal5/skift/actions/workflows/test.yml/badge.svg :target: https://github.com/shaypal5/skift/actions/workflows/test.yml
.. |LICENCE| image:: https://github.com/shaypal5/skift/blob/master/mit_license_badge.svg :target: https://github.com/shaypal5/skift/blob/master/LICENSE
.. https://img.shields.io/github/license/shaypal5/skift.svg
.. |Codecov| image:: https://codecov.io/github/shaypal5/skift/coverage.svg?branch=master :target: https://codecov.io/github/shaypal5/skift?branch=master
.. |Downloads| image:: https://pepy.tech/badge/skift :target: https://pepy.tech/project/skift :alt: PePy stats
.. |Codefactor| image:: https://www.codefactor.io/repository/github/shaypal5/skift/badge?style=plastic :target: https://www.codefactor.io/repository/github/shaypal5/skift :alt: Codefactor code quality
.. Trigerring Travis builds