llama-classification
llama-classification copied to clipboard
Text classification with Foundation Language Model LLaMA
Text classification using LLaMA
This repository provides a basic codebase for text classification using LLaMA.
What system do I use for development?
- Device: Nvidia 1xV100 GPU
- Device Memory: 34G
- Host Memory: 252G
If you need other information about hardware, please open an issue.
How to use
Experimental setup
-
Get the checkpoint from official LLaMA repository from here.
1-1. I assume that the checkpoint would be located in the project root direction and the contents would be arranged as follow.checkpoints ├── llama │ ├── 7B │ │ ├── checklist.chk │ │ ├── consolidated.00.pth │ │ └── params.json │ └── tokenizer.model -
Prepare your python environment. I recommend using anaconda to segregate your local machine CUDA version.
conda create -y -n llama-classification python=3.8 conda activate llama-classification conda install cudatoolkit=11.7 -y -c nvidia conda list cudatoolkit # to check what cuda version is installed (11.7) pip install -r requirements.txt
Method: Direct
Direct is to compare the conditional probability p(y|x).
-
Preprocess the data from huggingface datasets using the following scripts. From now on, we use the ag_news dataset.
python run_preprocess_direct_ag_news.py python run_preprocess_direct_ag_news.py --sample=False --data_path=real/inputs_direct_ag_news.json # Use it for full evaluation -
Inference to compute the conditional probability using LLaMA and predict class.
torchrun --nproc_per_node 1 run_evaluate_direct_llama.py \ --data_path samples/inputs_direct_ag_news.json \ --output_path samples/outputs_direct_ag_news.json \ --ckpt_dir checkpoints/llama/7B \ --tokenizer_path checkpoints/llama/tokenizer.model
Calibration is to improve direct method with calibration method.
- Calibrate using the following command.
torchrun --nproc_per_node 1 run_evaluate_direct_calibrate_llama.py \ --direct_input_path samples/inputs_direct_ag_news.json \ --direct_output_path samples/outputs_direct_ag_news.json \ --output_path samples/outputs_direct_calibrate_ag_news.json \ --ckpt_dir checkpoints/llama/7B \ --tokenizer_path checkpoints/llama/tokenizer.model
Method: Channel
Channel is to compare the conditional probability p(x|y).
-
Preprocess the data from huggingface datasets using the following scripts. From now on, we use the ag_news dataset.
python run_preprocess_channel_ag_news.py python run_preprocess_channel_ag_news.py --sample=False --data_path=real/inputs_channel_ag_news.json # Use it for full evaluation -
Inference to compute the conditional probability using LLaMA and predict class.
torchrun --nproc_per_node 1 run_evaluate_channel_llama.py \ --data_path samples/inputs_channel_ag_news.json \ --output_path samples/outputs_channel_ag_news.json \ --ckpt_dir checkpoints/llama/7B \ --tokenizer_path checkpoints/llama/tokenizer.model
Method: Pure generation
- To evaluate using
generatemode, you can use the preprocessed direct version.torchrun --nproc_per_node 1 run_evaluate_generate_llama.py \ --data_path samples/inputs_direct_ag_news.json \ --output_path samples/outputs_generate_ag_news.json \ --ckpt_dir checkpoints/llama/7B \ --tokenizer_path checkpoints/llama/tokenizer.model
Experiments
| Dataset | num_examples | k | method | accuracy | inference time |
|---|---|---|---|---|---|
| ag_news | 7600 | 1 | direct | 0.7682 | 00:38:40 |
| ag_news | 7600 | 1 | direct+calibrated | 0.8567 | 00:38:40 |
| ag_news | 7600 | 1 | channel | 0.7825 | 00:38:37 |
Todo list
- [x] Implement channel method
- [ ] Experimental report
- [x] Direct
- [x] Channel
- [ ] Generation
- [ ] Implement other calibration method
- [ ] Support other dataset inside the huggingface datasets
- [ ] Implement LLM.int8
- [ ] Other evaluation metric to measure the different characteristic of foundation model (LLaMA)
Final remark
- I am really appreciate for the LLaMA project team to publish a checkpoint and their efficient inference code. Much of work in this repository is done based on the official repository.
- For the reader, don't hesitate to open issue or pull requests. You can give me..
- Any issue about other feature requests
- Any issue about the detailed implementation
- Any discussion about the research direction
Citation
It would be welcome citing my work if you use my codebase for your research.
@software{Lee_Simple_Text_Classification_2023,
author = {Lee, Seonghyeon},
month = {3},
title = {{Simple Text Classification Codebase using LLaMA}},
url = {https://github.com/github/sh0416/llama-classification},
version = {1.1.0},
year = {2023}
}