scikit-mine icon indicating copy to clipboard operation
scikit-mine copied to clipboard

scikit-mine : pattern mining in Python

.. image:: https://img.shields.io/pypi/v/scikit-mine.svg :target: https://pypi.python.org/pypi/scikit-mine/

.. image:: https://codecov.io/gh/remiadon/scikit-mine/branch/master/graph/badge.svg :target: https://codecov.io/gh/remiadon/scikit-mine

.. image:: https://img.shields.io/badge/powered%20by-INRIA-orange.svg?style=flat&colorA=384257&colorB=E23324 :target: https://www.inria.fr/en

.. image:: https://pepy.tech/badge/scikit-mine :target: https://pepy.tech/project/scikit-mine

.. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-mine/scikit-mine/HEAD?filepath=docs%2Ftutorials%2Fperiodic%2Fperiodic_canadian_tv.ipynb

Scikit-mine : pattern mining in Python

  • Descriptive analysis, leading to interpretable, concise descriptions using the Minimum Description Length Principle <https://en.wikipedia.org/wiki/Minimum_description_length>_
  • Fast Algorithms
  • Simple, extendable API, inspired by scikit-learn_

.. _scikit-learn: https://scikit-learn.org/

Resources

  • Free software: BSD license
  • GitHub: https://github.com/scikit-mine/scikit-mine
  • Documentation: https://scikit-mine.github.io/scikit-mine/

Quickstart

scikit-mine is a Python module for pattern mining built on top of Pandas/Numpy/SciPy and is distributed under the 3-Clause BSD license.

It is currently maintained by a team of volunteers.

See examples in the tutorials; the notebooks are available here_. To execute the tutorials, you will have to install jupyter notebook or jupyterlab (https://jupyter.org/install)

.. _here: https://github.com/scikit-mine/scikit-mine/tree/master/docs/tutorials

Dependencies

scikit-mine requires Python>=3.8, and some extra dependencies

  • scipy>=1.2.1
  • pandas>=1.0.0
  • pyroaring>=0.3.4
  • joblib>=0.11.1
  • sortedcontainers>=2.1.0
  • dataclasses>=0.6
  • networkx
  • wget>=3.2
  • scikit-learn
  • graphviz
  • matplotlib
  • pydot

Development

This project benefitted from fundings from the INRIA center in Rennes, Brittany, France <https://www.inria.fr/fr/centre-inria-rennes-bretagne-atlantique>, as well as from the CNRS PNRIA Programme <https://www.ins2i.cnrs.fr/fr/reseau-des-ingenieurs-cnrs-du-programme-national-de-recherche-en-intelligence-artificielle-pnria>.

We welcome new contributors of all experience levels.

Internal Contributors

  • Rémi Adon (https://github.com/remiadon)
  • Hermann Courteille (https://github.com/hermann74)
  • Cyril Regan (https://github.com/cyril-data)
  • Thomas Betton (https://github.com/thomasbtnfr)
  • Esther Galbrun (https://github.com/nurblageij)
  • Peggy Cellier (https://github.com/PeggyCellier)
  • Alexandre Termier (https://github.com/alexandre-termier)
  • Luis Galárraga (https://github.com/lgalarra)
  • Josie Signe (https://github.com/Darlysia)
  • Francesco Bariatti (https://github.com/fbariatti)
  • Mensah-David Assigbi (https://github.com/davidassigbi)
  • Arnauld-Cyriaque Djedjemel (https://github.com/Ariaque)