metric-learn
metric-learn copied to clipboard
Metric learning algorithms in Python
|GitHub Actions Build Status| |License| |PyPI version| |Code coverage|
metric-learn: Metric Learning in Python
metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of scikit-learn-contrib <https://github.com/scikit-learn-contrib>, the API of metric-learn is compatible with scikit-learn <http://scikit-learn.org/stable/>, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.
Algorithms
- Large Margin Nearest Neighbor (LMNN)
- Information Theoretic Metric Learning (ITML)
- Sparse Determinant Metric Learning (SDML)
- Least Squares Metric Learning (LSML)
- Sparse Compositional Metric Learning (SCML)
- Neighborhood Components Analysis (NCA)
- Local Fisher Discriminant Analysis (LFDA)
- Relative Components Analysis (RCA)
- Metric Learning for Kernel Regression (MLKR)
- Mahalanobis Metric for Clustering (MMC)
Dependencies
- Python 3.6+ (the last version supporting Python 2 and Python 3.5 was
v0.5.0 <https://pypi.org/project/metric-learn/0.5.0/>_) - numpy>= 1.11.0, scipy>= 0.17.0, scikit-learn>=0.21.3
Optional dependencies
- For SDML, using skggm will allow the algorithm to solve problematic cases
(install from commit
a0ed406 <https://github.com/skggm/skggm/commit/a0ed406586c4364ea3297a658f415e13b5cbdaf8>_).pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'to install the required version of skggm from GitHub. - For running the examples only: matplotlib
Installation/Setup
-
If you use Anaconda:
conda install -c conda-forge metric-learn. See more optionshere <https://github.com/conda-forge/metric-learn-feedstock#installing-metric-learn>_. -
To install from PyPI:
pip install metric-learn. -
For a manual install of the latest code, download the source repository and run
python setup.py install. You may then runpytest testto run all tests (you will need to have thepytestpackage installed).
Usage
See the sphinx documentation_ for full documentation about installation, API, usage, and examples.
Citation
If you use metric-learn in a scientific publication, we would appreciate citations to the following paper:
metric-learn: Metric Learning Algorithms in Python <http://www.jmlr.org/papers/volume21/19-678/19-678.pdf>_, de Vazelhes
et al., Journal of Machine Learning Research, 21(138):1-6, 2020.
Bibtex entry::
@article{metric-learn, title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython}, author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and {Vauquier}, Nathalie and {Bellet}, Aur{'e}lien}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {138}, pages = {1--6} }
.. _sphinx documentation: http://contrib.scikit-learn.org/metric-learn/
.. |GitHub Actions Build Status| image:: https://github.com/scikit-learn-contrib/metric-learn/workflows/CI/badge.svg :target: https://github.com/scikit-learn-contrib/metric-learn/actions?query=event%3Apush+branch%3Amaster .. |License| image:: http://img.shields.io/:license-mit-blue.svg?style=flat :target: http://badges.mit-license.org .. |PyPI version| image:: https://badge.fury.io/py/metric-learn.svg :target: http://badge.fury.io/py/metric-learn .. |Code coverage| image:: https://codecov.io/gh/scikit-learn-contrib/metric-learn/branch/master/graph/badge.svg :target: https://codecov.io/gh/scikit-learn-contrib/metric-learn