llama_index icon indicating copy to clipboard operation
llama_index copied to clipboard

Azure OpenAI : Token indices sequence length is longer than the specified maximum sequence length for this model

Open nazkhan-8451 opened this issue 2 years ago • 1 comments

` llm = AzureOpenAI(deployment_name="gpt-35-turbo", model_kwargs={ "api_key": openai.api_key, "api_base": openai.api_base, "api_type": openai.api_type, "api_version": openai.api_version, }) llm_predictor = LLMPredictor(llm=llm)

embedding_llm = LangchainEmbedding(OpenAIEmbeddings( ))

documents = SimpleDirectoryReader('/dbfs/FileStore/shared_uploads').load_data()

index = GPTSimpleVectorIndex(documents) `

Error: Token indices sequence length is longer than the specified maximum sequence length for this model (3481 > 1024). Running this sequence through the model will result in indexing errors

Then I get INFO:openai:error_code=None error_message='Too many inputs for model None. The max number of inputs is 1. We hope to increase the number of inputs per request soon. Please contact us through an Azure support request at: https://go.microsoft.com/fwlink/?linkid=2213926 for further questions.' error_param=None error_type=invalid_request_error message='OpenAI API error received' stream_error=False

nazkhan-8451 avatar Mar 21 '23 14:03 nazkhan-8451

Looks like langchain doesn't expose the contextsize for AzureOpenAI super well yet. We can look into a quick fix on our side first!

Disiok avatar Mar 21 '23 17:03 Disiok

The two error messages here are actually un-related

The first error is about the tokenizer (I am guessing you have python3.8. In that case, we use a tokenizer from huggingface rather than tiktoken, but the warning is harmless)

The second error is about the batch size most likely. You can set the embed_batch_size as such

embedding_llm = LangchainEmbedding(OpenAIEmbeddings(embed_batch_size=1))

Closing this issue for now! Feel free to re-open if needed

logan-markewich avatar Jun 06 '23 02:06 logan-markewich