llama_index
llama_index copied to clipboard
Bug: GPTSimpleVectorIndex() does not work with Azure
the below code does not work
llm = AzureOpenAI(deployment_name="deployment_name", model_kwargs={
"api_key": "api_key",
"api_base": "api_base",
"api_type": "azure",
"api_version": "2022-12-01",
})
llm_predictor = LLMPredictor(llm=llm)
embedding_llm = LangchainEmbedding(OpenAIEmbeddings(
document_model_name="document_model_name",
query_model_name="text-embedding-ada-002"
))
documents = SimpleDirectoryReader('data/').load_data()
prompt_helper = PromptHelper(500, 48, 20)
index = GPTSimpleVectorIndex(documents, embed_model=embedding_llm, llm_predictor=llm_predictor, prompt_helper=prompt_helper)
print(index.query('what is the boy name'))
the above gives the error
openai.error.AuthenticationError: Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.
but the same code with GPTListIndex works
llm = AzureOpenAI(deployment_name="deployment_name", model_kwargs={
"api_key": "api_key",
"api_base": "api_base",
"api_type": "azure",
"api_version": "2022-12-01",
})
llm_predictor = LLMPredictor(llm=llm)
embedding_llm = LangchainEmbedding(OpenAIEmbeddings(
document_model_name="document_model_name",
query_model_name="text-embedding-ada-002"
))
documents = SimpleDirectoryReader('data/').load_data()
prompt_helper = PromptHelper(500, 48, 20)
index = GPTListIndex(documents, embed_model=embedding_llm, llm_predictor=llm_predictor, prompt_helper=prompt_helper)
print(index.query('what is the boy name'))
Note: the credentials were same for both of them
hey @siddhant01, it may be because you're using the openai embedding api in the first approach (not the azure one). have you tried setting openai_api_key to see if it works?
Closing since the thread is stale, and most likely a configuration problem.
did you solve your error? i am having same issue.
from llama_index import LLMPredictor
from langchain.llms import AzureOpenAI
from llama_index import LangchainEmbedding
from langchain.embeddings import OpenAIEmbeddings
from llama_index.indices.query.query_transform import HyDEQueryTransform
from llama_index.query_engine.transform_query_engine import TransformQueryEngine
# define LLM
llm_predictor = LLMPredictor(llm=AzureOpenAI(temperature=0, model_name="gpt-3.5-turbo", engine="GPT35turbooooo"))
embedding_llm = LangchainEmbedding(
OpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="ada002",
),
embed_batch_size=1,
)
from llama_index import set_global_service_context
# configure service context
service_context = ServiceContext.from_defaults(
llm_predictor=llm_predictor,
embed_model=embedding_llm,
chunk_size=1000,
chunk_overlap=200
)
set_global_service_context(service_context)
# build index
index = GPTVectorStoreIndex(
nodes
)
Error: AuthenticationError: Access denied due to invalid subscription key or wrong API endpoint. Make sure to provide a valid key for an active subscription and use a correct regional API endpoint for your resource.