AML icon indicating copy to clipboard operation
AML copied to clipboard

New Insights on Reducing Drastic Representation Drift in Online Continual Learning

Avoiding disrupting learned representations when new classes are introduced

(key) Requirements

  • Python 3.8
  • Pytorch 1.6.0

Structure

├── method.py           # Implementation of proposed methods and reported baselines
├── buffer.py           # Basic buffer implementation 
├── data.py             # DataLoaders and Datasets
├── main.py             # main file for ER
├── model.py            # model defitinition and cosine cross-entropy head
├── losses.py           # custom loss functions
├── utils.py            # utilities, from logging to data download

Running Experiments

python main.py --dataset <dataset> --method <method> --mem_size <mem_size> 

ER-ACE example:

python main.py --dataset split_cifar10 --method er_ace --mem_size 20 

ER-AML example:

python main.py --dataset split_cifar10 --method er_aml --mem_size 20 --supcon_temperature 0.2

Logging

Logging is done with Weights & Biases and can be turned on like this:

python -dataset <dataset> --method <method> --wandb_log online --wandb_entity <wandb username>