mmdetection3d
mmdetection3d copied to clipboard
[Bug] Run CenterPoint inference on mini-val set two times, but results are different.
Prerequisite
- [X] I have searched Issues and Discussions but cannot get the expected help.
- [X] I have read the FAQ documentation but cannot get the expected help.
- [X] The bug has not been fixed in the latest version (dev-1.x) or latest version (dev-1.0).
Task
I'm using the official example scripts/configs for the officially supported tasks/models/datasets.
Branch
main branch https://github.com/open-mmlab/mmdetection3d
Environment
sys.platform: linux
Python: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
CUDA available: True
numpy_random_seed: 2147483648
GPU 0: Tesla T4
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.2, V12.2.140
GCC: x86_64-linux-gnu-gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.1.0+cu121
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 12.1
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 8.9.2
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.16.0+cu121
OpenCV: 4.8.0
MMEngine: 0.10.2
MMDetection: 3.3.0
MMDetection3D: 1.4.0+fe25f7a
spconv2.0: False
Reproduces the problem - code sample
I was using the original codes for CenterPoint and inference/evaluation
Reproduces the problem - command or script
I just ran the mmdet3d in colab script
config = 'configs/centerpoint/centerpoint_voxel0075_second_secfpn_head-dcn-circlenms_8xb4-cyclic-20e_nus-3d.py'
checkpoint = 'checkpoints/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.pth'
!python tools/test.py $config $checkpoint --cfg-options test_dataloader.dataset.metainfo.version='v1.0-mini'
Reproduces the problem - error message
No error information.
Additional information
I ran this script/command twice, but I got two slightly different results. It seems the inference is non-deterministic. Do you have any ideas why?
The TTA RandomFlip3D is causing the issue. Additionally test_mode=True is also required in LoadPointsFromMultiSweeps for it to be deterministic.
So for example update your test pipeline to the following:
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
backend_args=backend_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
test_mode=True, # make sure this is set to true
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
# dict(type='RandomFlip3D'), # comment out this line
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]