CDD-CESM-Dataset
                                
                                 CDD-CESM-Dataset copied to clipboard
                                
                                    CDD-CESM-Dataset copied to clipboard
                            
                            
                            
                        This is a helper repository for the CDD-CESM Mammogram Dataset containing all the tools for pre-processing and segmentation models.
CDD-CESM-Dataset
This is a helper repository for the CDD-CESM Mammogram Dataset containing all the tools for pre-processing and segmentation model
Dataset Link: here
Paper Link: here
 
Installation & Usage
The project was tested on a virtual environment of python 3.7, pip 23.2.1, and MacOS
- pip install -r full_requirements.txt (or pip install -r requirements.txt if there are errors because of using a different operating system, as requirements.txt only contains the main dependencies and pip will fetch the compatible sub-dependencies, but it will be slower)
- Download dataset
- Put the images inside dataset/images
- split annotations into dataset/train_set.csvanddataset/test_set.csv
- edit configs.pyto configure the training process
- run train.pyto train a classification model
- run test.pyto test a classification model
- run parse_reports.pyto parse the full reports and convert them to csv
- run clean_images_names.pyto remove any spaces from the images' names
- run parse_reports.pyto parse the full reports and convert them to csv
- run draw_activations.pyto draw gradcam activations from a trained model
- run evaluate_segmentation_model.pyto evaluate the segmentations from a trained classification model using the method in the paper and save the images
- run draw_real_segmentations.pyto draw the segmentations from the segmentation annotations
 
Automatic Segmentation Flow & Example Results
 
 
Citation
If you use this dataset, please cite the following:
- 
Khaled R., Helal M., Alfarghaly O., Mokhtar O., Elkorany A., El Kassas H., Fahmy A. Categorized Digital Database for Low energy and Subtracted Contrast Enhanced Spectral Mammography images [Dataset]. (2021) The Cancer Imaging Archive. DOI: 10.7937/29kw-ae92 
- 
Khaled, R., Helal, M., Alfarghaly, O., Mokhtar, O., Elkorany, A., El Kassas, H., & Fahmy, A. Categorized contrast enhanced mammography dataset for diagnostic and artificial intelligence research. (2022) Scientific Data, Volume 9, Issue 1. DOI: 10.1038/s41597-022-01238-0 
- 
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057. DOI: 10.1007/s10278-013-9622-7