tensorflow-yolo-v3
tensorflow-yolo-v3 copied to clipboard
Implementation of YOLO v3 object detector in Tensorflow (TF-Slim)
tensorflow-yolo-v3
Implementation of YOLO v3 object detector in Tensorflow (TF-Slim). Full tutorial can be found here.
Tested on Python 3.5, Tensorflow 1.11.0 on Ubuntu 16.04.
Todo list:
- [x] YOLO v3 architecture
- [x] Basic working demo
- [x] Weights converter (util for exporting loaded COCO weights as TF checkpoint)
- [ ] Training pipeline
- [ ] More backends
How to run the demo:
To run demo type this in the command line:
- Download COCO class names file:
wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names - Download and convert model weights:
- Download binary file with desired weights:
- Full weights:
wget https://pjreddie.com/media/files/yolov3.weights - Tiny weights:
wget https://pjreddie.com/media/files/yolov3-tiny.weights - SPP weights:
wget https://pjreddie.com/media/files/yolov3-spp.weights
- Full weights:
- Run
python ./convert_weights.pyandpython ./convert_weights_pb.py
- Download binary file with desired weights:
- Run
python ./demo.py --input_img <path-to-image> --output_img <name-of-output-image> --frozen_model <path-to-frozen-model>
####Optional Flags
- convert_weights:
--class_names- Path to the class names file
--weights_file- Path to the desired weights file
--data_formatNCHW(gpu only) orNHWC
--tiny- Use yolov3-tiny
--spp- Use yolov3-spp
--ckpt_file- Output checkpoint file
- convert_weights_pb.py:
--class_names1. Path to the class names file--weights_file- Path to the desired weights file
--data_formatNCHW(gpu only) orNHWC
--tiny- Use yolov3-tiny
--spp- Use yolov3-spp
--output_graph- Location to write the output .pb graph to
- demo.py
--class_names- Path to the class names file
--weights_file- Path to the desired weights file
--data_formatNCHW(gpu only) orNHWC
--ckpt_file- Path to the checkpoint file
--frozen_model- Path to the frozen model
--conf_threshold- Desired confidence threshold
--iou_threshold- Desired iou threshold
--gpu_memory_fraction- Fraction of gpu memory to work with