frcnn icon indicating copy to clipboard operation
frcnn copied to clipboard

How to train on coco?

Open lucasjinreal opened this issue 6 years ago • 8 comments

How to train on coco anyway?

lucasjinreal avatar Aug 09 '19 06:08 lucasjinreal

The input data format this repo support is as follows:

# image-id
image-name
number of boxes
label x1 y1 x2 y2 difficulty
...

So if you like to use the input layer in this repo, you need convert coco to this format, or you can custom your input layer.

makefile avatar Aug 09 '19 06:08 makefile

Oh, I see....

lucasjinreal avatar Aug 09 '19 10:08 lucasjinreal

@makefile BTW, how to design anchor in terms of coco dataset? For those voc it's like this:

 "feat_stride": "16",
 "anchors": "-84, -40, 99, 55,
             -176,  -88,  191,   103,
             -360,  -184,   375,   100,
             -56,   -56,    71,    72,
             -120,  -120,   135,   135,
             -248,  -248,   263,   263,
             -36,   -80,    51,    95,
             -80,   -168,   95,    183,
             -168,  -344,   183,   359",
 "test_score_thresh": "0.5",
 "n_classes": "21",

How to generats anchors in terms of coco dataset?

lucasjinreal avatar Aug 12 '19 05:08 lucasjinreal

Try to use examples/FRCNN/generate_anchors.py to generate anchors info.

makefile avatar Aug 12 '19 06:08 makefile

@makefile Should I change anything in terms of different dataset? I can not found any where to set if I am not using voc.

lucasjinreal avatar Aug 12 '19 07:08 lucasjinreal

You can adjust the settings in voc cfg file to adapt to different dataset.

makefile avatar Aug 12 '19 07:08 makefile

I mean, should those anchors also changed? But I can not see any params to set in generate_anchors.py.

lucasjinreal avatar Aug 12 '19 07:08 lucasjinreal

You can set params in function generate_anchors(base_size=16, ratios=[0.5, 1, 2], scales=2**np.arange(3, 6)).

makefile avatar Aug 12 '19 07:08 makefile