MonkeyLang.jl
MonkeyLang.jl copied to clipboard
"Writing an Interpreter in GO" and "Writing a Compiler in GO" in Julia.
MonkeyLang
Monkey Programming Language written in Julia.
Table of Contents
- MonkeyLang
- Using Monkey in Julia
- Compile MonkeyLang.jl to a standalone executable
- Start the REPL
- Documentation
- Summary
- Syntax overview
- If
- While
- Operators
- Return
- Variable bindings
- Scopes
- Global Scope
- Local Scope
- Closure Scope
- CurrentClosure Scope
- Literals
- INTEGER
- BOOLEAN
- NULL
- STRING
- ARRAY
- HASH
- FUNCTION
- Built-in Functions
type(<arg1>): STRINGputs(<arg1>, <arg2>, ...): NULLlen(<arg>): INTEGERfirst(<arg: STRING>): STRING | NULLfirst(<arg: Array>): anylast(<arg: String>): STRING | NULLlast(<arg: Array>): anyrest(<arg: STRING>): STRING | NULLrest(<arg: ARRAY>): ARRAY | NULLpush(<arg1: ARRAY>, <arg2>): ARRAYpush(<arg1: HASH>, <arg2>, <arg3>): HASH
- Advanced examples
- A custom
mapfunction - A custom
reducefunction
- A custom
- Macro System
Using Monkey in Julia
You can start the REPL within Julia:
using MonkeyLang
start_repl()
Or you can evaluate Monkey programs using string macros:
using MonkeyLang
a = 2
monkey_eval"let b = $a; puts(b)"
monkey_vm"let c = [$a, $a]; puts(c)"
monkey_julia"let d = {$a: $a}; puts(d)"
Compile MonkeyLang.jl to a standalone executable
Clone the repo, and run make build in the root directory.
Caution: The compilation may take up to ~5 minutes.
Start the REPL
You can start the REPL in a Julia script or in the Julia REPL:
import Pkg; Pkg.add("MonkeyLang")
using MonkeyLang
MonkeyLang.start_repl()
MonkeyLang.start_repl(; use_vm = true) # use VM
You can press Ctrl-C or Ctrl-D to exit the REPL.
If you have compiled MonkeyLang.jl locally, then you can directly start the REPL by:
./monkey repl
./monkey repl --vm # use VM
Documentation
I created the document with reference to Writing An Interpreter In Go and rs-monkey-lang.
:warning: Please note that there may be some mistakes.
Summary
- C-like syntax
- variable bindings
- first-class and higher-order functions • closures
- arithmetic expressions
- built-in functions
Syntax overview
An example of Fibonacci function.
let fibonacci = fn(x) {
if (x == 0) {
0;
} else {
if (x == 1) {
1;
} else {
fibonacci(x - 1) + fibonacci(x - 2);
}
}
};
fibonacci(10);
If
It supports the general if. else exists, but else if does not exist.
if (true) {
10;
} else {
5;
}
While
It also supports while loops.
let x = 5;
while (x > 0) {
puts(x);
x = x - 1;
}
Operators
It supports the general operations.
1 + 2 + (3 * 4) - (10 / 5);
!true;
!false;
+10;
-5;
"Hello" + " " + "World";
Return
It returns the value immediately. No further processing will be executed.
if (true) {
return;
}
let identity = fn(x) {
return x;
};
identity("Monkey");
Variable bindings
Variable bindings, such as those supported by many programming languages, are implemented. Variables can be defined using the let keyword. Variables cannot be redefined in the same scope, but they can be reassigned.
Format:
let <identifier> = <expression>; # Define
<identifier> = <expression>; # Reassign
Example:
let x = 0;
let y = 10;
let foobar = add(5, 5);
let alias = foobar;
let identity = fn(x) { x };
x = x + 1;
y = x - y;
Scopes
In Monkey, there are types of scopes:
Global Scope
Variables defined at the top level are visible everywhere, and can be modified from anywhere.
let x = 2; # `x` is a global variable
let f = fn() {
let g = fn() {
x = x + 1; # Modifies the global variable `x`
return x;
}
return g;
}
let g = f();
puts(g()); # 3
puts(g()); # 4
let h = f();
puts(h()); # 5
puts(h()); # 6
Local Scope
Variables defined within while loops or functions are of this scope. They can be modified from the same scope, or inner while loops' scopes.
let x = 1;
while (x > 0) {
x = x - 1;
let y = 1; # `y` is a local variable
while (y > 0) {
y = y - 1; # Modifies the local variable `y`
}
puts(y); # 0
}
Closure Scope
A function captures all non-global variables visible to it as its free variables. These variables can be modified from within the function.
let f = fn() {
let x = 2;
let g = fn() {
x = x + 1; # `x` is captured as a free variable
return x;
}
return g;
}
let g = f();
puts(g()); # 3
puts(g()); # 4
let h = f();
puts(h()); # 3, since in function `f`, `x` remains unchanged.
puts(h()); # 4
CurrentClosure Scope
Specially, a named function being defined is of this scope. It cannot be modified from within its body.
let f = fn(x) {
f = 3; # ERROR: cannot reassign the current function being defined: f
}
But redefinition is OK:
let f = fn(x) {
let f = x + x;
puts(f);
}
f(3); # 6
Literals
Five types of literals are implemented.
INTEGER
INTEGER represents an integer value. Floating point numbers can not be handled.
Format:
[-+]?[1-9][0-9]*;
Example:
10;
1234;
BOOLEAN
BOOLEAN represents a boolean value.
Format:
true | false;
Example:
true;
false;
let truthy = !false;
let falsy = !true;
NULL
NULL represents null. When used as a condition, NULL is evaluated as falsy.
Format:
null;
Example:
if (null) { 2 } else { 3 }; # 3
STRING
STRING represents a string. Only double quotes can be used.
STRINGs can be concatenated with "+".
Format:
"<value>";
Example:
"Monkey Programming Language"; # "Monkey Programming Language";
"Hello" + " " + "World"; # "Hello World"
ARRAY
ARRAY represents an ordered contiguous element. Each element can contain different data types.
Format:
[<expression>, <expression>, ...];
Example:
[1, 2, 3 + 3, fn(x) { x }, add(2, 2), true];
let arr = [1, true, fn(x) { x }];
arr[0];
arr[1];
arr[2](10);
arr[1 + 1](10);
HASH
HASH expresses data associating keys with values.
Format:
{ <expression>: <expression>, <expression>: <expression>, ... };
Example:
let hash = {
"name": "Jimmy",
"age": 72,
true: "a boolean",
99: "an integer"
};
hash["name"];
hash["a" + "ge"];
hash[true];
hash[99];
hash[100 - 1];
FUNCTION
FUNCTION supports functions like those supported by other programming languages.
Format:
fn (<parameter one>, <parameter two>, ...) { <block statement> };
Example:
let add = fn(x, y) {
return x + y;
};
add(10, 20);
let add = fn(x, y) {
x + y;
};
add(10, 20);
If return does not exist, it returns the result of the last evaluated expression.
let addThree = fn(x) { x + 3 };
let callTwoTimes = fn(x, f) { f(f(x)) };
callTwoTimes(3, addThree);
Passing around functions, higher-order functions and closures will also work.
The evaluation order of function parameters is left to right.
So a memoized Fibonacci function should be implemented like:
let d = {}
let fibonacci = fn(x) {
if (x == 0) {
0
} else {
if (x == 1) {
1;
} else {
if (type(d[x]) == "NULL") {
# You cannot use `d = push(d, x, fibonacci(x - 1) + fibonacci(x - 2))`
# since `d` is evaluated first, which means it will not be updated
# when `fibonacci(x - 1)` and `fibonacci(x - 2)` are called.
let g = fibonacci(x - 1) + fibonacci(x - 2);
d = push(d, x, g);
}
d[x];
}
}
};
fibonacci(35);
Built-in Functions
You can use the following built-in functions :rocket:
type(<arg1>): STRING
Return the type of arg1 as a STRING.
type(1); # INTEGER
type("123"); # STRING
type(false); # BOOLEAN
puts(<arg1>, <arg2>, ...): NULL
It outputs the specified value to stdout. In the case of Playground, it is output to console.
puts("Hello");
puts("World!");
len(<arg>): INTEGER
- For
STRING, it returns the number of characters. - For
ARRAY, it returns the number of elements. - For
HASH, it returns the number of key-value pairs.
len("Monkey"); # 6
len([0, 1, 2]); # 3
len({1: 2, 2: 3}); # 2
first(<arg: STRING>): STRING | NULL
Returns the character at the beginning of a STRING. If the STRING is empty, return NULL instead.
first("123"); # "1"
first(""); # null
first(<arg: Array>): any
Returns the element at the beginning of an ARRAY. If the ARRAY is empty, return NULL instead.
first([0, 1, 2]); # 0
first([]); # null
last(<arg: String>): STRING | NULL
Returns the element at the last of a STRING. If the STRING is empty, return NULL instead.
last("123"); # "3"
last(""); # null
last(<arg: Array>): any
Returns the element at the last of an ARRAY. If the ARRAY is empty, return NULL instead.
last([0, 1, 2]); # 2
last([]) # null
rest(<arg: STRING>): STRING | NULL
Returns a new STRING with the first element removed. If the STRING is empty, return Null instead.
rest("123"); # "23"
rest(""); # null
rest(<arg: ARRAY>): ARRAY | NULL
Returns a new ARRAY with the first element removed. If the ARRAY is empty, return NULL instead.
rest([0, 1, 2]); # [1, 2]
rest([]); # null
push(<arg1: ARRAY>, <arg2>): ARRAY
Returns a new ARRAY with the element specified at the end added.
push([0, 1], 2); # [0, 1, 2]
push(<arg1: HASH>, <arg2>, <arg3>): HASH
Returns a new HASH with arg2: arg3 added. If arg2 already exists, the value will be updated with arg3.
push({0: 1}, 1, 2); # {1:2, 0:1}
push({0: 1}, 0, 3); # {0:3}
Advanced examples
A custom map function
let map = fn(arr, f) {
let iter = fn(arr, accumulated) {
if (len(arr) == 0) {
accumulated
} else {
iter(rest(arr), push(accumulated, f(first(arr))));
}
};
iter(arr, []);
};
let a = [1, 2, 3, 4];
let double = fn(x) { x * 2};
map(a, double); # [2, 4, 6, 8]
A custom reduce function
let reduce = fn(arr, initial, f) {
let iter = fn(arr, result) {
if (len(arr) == 0) {
result
} else {
iter(rest(arr), f(result, first(arr)))
}
}
iter(arr, initial)
}
let sum = fn(arr) {
reduce(arr, 0, fn(initial, el) { initial + el })
}
sum([1, 2, 3, 4, 5]); # 15
Macro System
Now that the Lost Chapter has been implemented, MonkeyLang.jl provides a powerful macro system.
Here is an example:
let unless = macro(condition, consequence, alternative) {
quote(if (!(unquote(condition))) {
unquote(consequence);
} else {
unquote(alternative);
});
};
unless(10 > 5, puts("not greater"), puts("greater")); # greater
In the REPL, you need to enter all the contents in a single line without
\ncharacters.
Enjoy Monkey :monkey_face: !