HAST icon indicating copy to clipboard operation
HAST copied to clipboard

Aspect Term Extraction with History Attention and Selective Transformation (IJCAI 2018)

HAST

Aspect Term Extraction with History Attention and Selective Transformation.

Requirements

  • Python 3.6
  • DyNet 2.0.2 (For building DyNet and enabling the python bindings, please follow the instructions in this link)
  • nltk 3.2.2
  • numpy 1.13.3

External Linguistic Resources

Preprocessing

  • Window-based input (window size is 3, as done in Pengfei's work).
  • Replacing the punctuations with the same token PUNCT.
  • Only the sentimental words with strong subjectivity are employed to provide distant supervision.

Running

python main.py -ds_name [YOUR_DATASET_NAME] -sgd_lr [YOUR_LEARNING_RATE_FOR_SGD] -win [YOUR_WINDOW_SIZE] -optimizer [YOUR_OPTIMIZER] -rnn_type [LSTM|GRU] -attention_type [bilinear|concat]

Environment

  • OS: REHL Server 6.4 (Santiago)
  • CPU: Intel Xeon CPU E5-2620 (Yes, we do not use GPU)

Citation

If the code is used in your research, please star this repo and cite our paper as follows:

@inproceedings{li2018aspect,
  title={Aspect Term Extraction with History Attention and Selective Transformation},
  author={Li, Xin and Bing, Lidong and Li, Piji and Lam, Wai and Yang, Zhimou},
  booktitle={IJCAI},
  pages={4194--4200}
  year={2018}
}