IQA-Dataset
IQA-Dataset copied to clipboard
A unified interface for downloading and loading popular Image Quality Assessment (IQA) datasets.
A Unified Interface for IQA Datasets
This repository contains a unified interface for downloading and loading 20 popular Image Quality Assessment (IQA) datasets. We provide codes for both general Python and PyTorch.
Citation
This repository is part of our Bayesian IQA project where we present an overview of IQA methods from a Bayesian perspective. More detailed summaries of both IQA models and datasets can be found in this interactive webpage.
If you find our project useful, please cite our paper
@article{duanmu2021biqa,
author = {Duanmu, Zhengfang and Liu, Wentao and Wang, Zhongling and Wang, Zhou},
title = {Quantifying Visual Image Quality: A Bayesian View},
journal = {Annual Review of Vision Science},
volume = {7},
number = {1},
pages = {437-464},
year = {2021}
}
Supported Datasets
| Dataset | Dis Img | Ref Img | MOS | DMOS |
|---|---|---|---|---|
| LIVE | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| A57 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| LIVE_MD | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| MDID2013 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| KADID-10k | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| TID2008 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| TID2013 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| CSIQ | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| CIDIQ_MOS100 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| MDID2016 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| SDIVL | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| MDIVL | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| Toyama | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| PDAP-HDDS | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| VCLFER | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| LIVE_Challenge | :heavy_check_mark: | :heavy_check_mark: | ||
| CID2013 | :heavy_check_mark: | :heavy_check_mark: | ||
| KonIQ-10k | :heavy_check_mark: | :heavy_check_mark: | ||
| SPAQ | :heavy_check_mark: | :heavy_check_mark: | ||
| Waterloo_Exploration | :heavy_check_mark: | :heavy_check_mark: | ||
| :heavy_check_mark: (code only) | :heavy_check_mark: |
Basic Usage
-
General Python (please refer
demo.py)dataset = load_dataset("LIVE") -
PyTorch (please refer
demo_pytorch.py)dataset = load_dataset_pytorch("LIVE")
Advanced Usage
-
General Python (please refer
demo.py)dataset = load_dataset("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True) -
PyTorch (please refer
demo_pytorch.py)transform = transforms.Compose([transforms.RandomCrop(size=64), transforms.ToTensor()]) dataset = load_dataset_pytorch("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True, transform=transform)